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Abstract – For high frequency on-chip communication 
architecture design, we propose cascaded bus matrix-based 
solutions.  Due to the huge design space in cascaded bus 
matrix design, it is crucial to perform an efficient design space 
exploration.  In our work, we present a simulated 
annealing-based design space exploration method.  For an 
efficient representation of bus topology, we propose an 
encoding method called traffic group encoding and apply it to 
AMBA3 AXI-based bus system design.  In addition, we 
propose a method of two-step simulated annealing to improve 
the quality of results. Experimental results show that the 
proposed methods allow designing complex communication 
architectures (ones with up to 31 masters and 71 slaves) with 
high frequency constraints to which existing methods could not 
give solutions. 

I. Introduction 

It is commonly predicted that a single SoC will have 
hundreds of IPs (CPUs, DSPs, ASIPs, coprocessors, etc.) 
and its operating frequency will continue to increase [1]. The 
increasing number of IPs and operating frequency impose a 
significant problem on on-chip communication architecture 
design. Conventional designs based on shared bus have 
limitations in accommodating a large number of IPs with 
high operating frequency.  

Recently, bus matrix based (or crossbar based) designs are 
getting increasingly popular for on-chip communication, due 
to its high throughput and support for various popular bus 
protocols, such as for ARM’s PL300/301 [2], Synopsys 
DesignWare AMBA 3 fabric,[3] and Sonics’ SonicsMX [4]. 

There have been several studies on bus matrix-based 
communication architecture design [5]. However, their 
approach is based on the usage of one central bus matrix, 
along with many local shared buses. Although such a 
configuration is practical in that it is a natural migration 
from the multi-layer bus design, we predict that it will start 
to suffer from new problems as the number of IP’s increases, 
due to the following reasons: 

A bus matrix’s size is proportional to the number of 
masters times the number of slaves.  Although it is 
possible to build a sparse matrix to remove unnecessary 
connections, and group several masters and/or slaves to 
a local bus as in [5], a local bus’s size cannot increase 
indefinitely, due to many problems such as bandwidth 
and clock frequency.  Therefore, the central bus matrix 
may become too large when used in a large system with 
many IP’s. 

If the bus matrix’s size increases, the added logic delay 
will lower the clock frequency of the bus matrix.  This 
is because as the number of ports connected to the bus 
matrix increases, the logic depth of the bus increases. 
Based on our experience, the logic depth in the arbiter 
and the decoder of the bus matrix increases as the 
number of IP’s increases. 
Although higher clock frequency may be achievable by 
pipelining the bus matrix’s internal architecture, existing 
solutions have limitations in the pipelining. For instance, 
ARM’s PL301 gives address decode as the only internal 
pipeline option while pipeline points in Sonics’ SMX 
affect only the interface timing between the bus matrix 
(SMX) and the IP. 

In order to resolve the problem of designing on-chip 
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communication architecture with high frequency constraints 
and a large number of IP’s, we present a method of 
designing communication architecture with a cascaded 
matrix architecture, which consists of multiple smaller bus 
matrices rather than one large bus matrix connecting the 
local buses in the existing studies. 

A. Motivational Example 
Figure 1 shows an example system.  The system consists 

of one bus matrix, which connects 4 masters and 7 slaves. If 
all components are directly connected to the bus matrix, the 
bus matrix (shown as a dashed rectangle in the figure) 
becomes excessively large. The logic delay will also be large 
(e.g., 5ns). However, by grouping some of the slaves into 
local buses and connecting it to the bus matrix, the bus 
matrix size can be reduced. The logic delay may be reduced 
(e.g., 4ns). 

If we design the same system with multiple bus matrices 
as shown in Figure 1 (c), we can see that the sizes of the bus 
matrices decrease thereby giving a smaller logic delay (e.g. 
3.3ns), at the expense of an additional cycle of latency.  
Thus, a higher-frequency communication architecture can be 
obtained. 

B. Our Contribution 
Cascaded bus matrix design has a huge design space since, 

with a given number of IPs, the number of possible 
compositions of small matrices is very large. Thus, we need 
a method of efficiently exploring the huge design. In our 
work, the design space exploration is based on simulated 
annealing. In this paper, we propose two methods for 
efficient design space exploration: bus topology encoding 
and two-step simulated annealing. 

C. Paper Organization 
The paper is organized as follows. Section II will present 

related work. Section III defines the problem, and Section 
IV describes the overall architecture of the synthesis flow 
for solving the problem.  Section V explains the encoding 
method – how to describe the system.  Section VI shows 
the experiment results, and Section VII concludes the paper, 
along with some possible future work to be done. 

II. Related Work 

There have been many communication architecture 
synthesis flows for conventional bus protocols [5,6,8,9] and 
network-on-chips[7,10].   Many of these automated 
synthesis flows focus on mapping each IPs on a pre-defined 
interconnect topology, thus reducing the flexibility on 
transforming the interconnect topology itself.  Although 
there also has been some researches on transforming the 
interconnect topology itself, the amount of freedom on 
topology generation is still limited. 

An example is the FlexBus [8,9], which has multiple local 
buses connected to each other via master-master bridges.  
The IPs are connected to one of the local buses, and the 
connectivity can be reconfigured on-the-fly.  However, the 
authors didn’t consider methods of changing the global 

communication architecture’s topology, and uses a fixed 
global communication topology. 

Another example is the method described on [5].  The 
authors generated a system with a single bus matrix, and 
local buses are attached to each of the ports on the matrix.  
We extend the approach proposed by [5], by synthesizing 
communication architectures with multiple bus matrices 
rather than only one.  Although this will introduce 
additional complexity on the synthesis flow, we expect that 
this additional complexity will worth the cost on large 
systems with hundreds of master/slave ports. 

[13] also deals with a similar problem, which connects 
components into smaller local buses, and uses switches to 
forward traffic from one bus to another bus.  Our work is a 
more aggressive approach compared to [13], as their work 
does not consider topologies with multiple cascaded 
switches.

III. Problem Definition 

Our problem is to find a cascaded bus matrix which 
satisfies the given communication specification, i.e. 
communication behavior and the requirements of bandwidth 
and latency.  

A. Communication trace graph 
As the communication behavior, we use communication 

trace graph. A communication trace graph CTG = (V, E) is a 
directed graph, where each node of the graph is a port that 
can be connected to the network, and the directed edge 
represents a communication trace between the two nodes. 
We use a CTG of a special case - a node may be an 
‘outgoing’ node, which has outgoing edges only, or an 
‘incoming node’, which has incoming edges only.  Thus, 
the CTG becomes a bipartite graph.  For IPs with both 
incoming communication and outgoing communication, the 
IP can be modeled as two separate nodes.  In this paper, the 
edge direction represents the direction of the transaction.  
Thus, masters are ‘outgoing’ nodes, and slaves are 
‘incoming’ nodes. 

There are two function that represents bandwidth and 
latency. For every e, )(ebw denotes the bandwidth of the 
traffic, and for every e, )(emaxdelay denotes the maximum 
latency (in microseconds) of the traffic. 

B. Implementation Graph and Path Function 
To make a formal definition, we define the 

implementation graph ),( IEIVIG  as a directed graph as 
a graph which has the following properties; 

IVV

For all Evve ji ),( , There exists a path from 
iv  to 

jv  on IG .  This path will be represented as )(ePATH ,
which will be defined later. 

Implementation graphs represent the topology of the 
communication architecture which satisfies the 
communication requirements of the given CTG.  The nodes 
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represent the objects in the communication architecture, and 
the edges represent the communication channel between the 
objects. The first property means that the nodes of the 
implementation graph includes the ports on the CTG, and the 
second property shows that the implementation graph 
requires being able to satisfy all the communication 
requirements of the CTG. 

Like the CTG, implementation graphs also have two 
functions for bandwidth and latency. For each edge IGie ,

)(iemaxbw  represents the bandwidth that the edge can 
sustain, and )(iedelay  represents the transmission delay 
required for data transmission.  In real world situations, 

)(iemaxbw  is determined by various variables, such as data 
bus width or clock frequency, and )(iedelay  is determined 
by the latency caused by the various communication 
components on the architecture. 

Additionally, we define the path function 
}{: IVEPATH , where )(ePATH  is a path on the 

implementation graph.  The path function is the mapped 
result of the CTG on the implementation graph – the path 
function represents the path the traffic flows on the 
communication architecture. 

Figure 2 shows an example CTG and an example IG for 
the CTG.  For each edge on the CTG, there is a 
corresponding path on the IG.  For example, the CTG edge 

from M1 to S1 corresponds to the path M1->X1->S1, and 
the CTG edge from M1 to S3 corresponds to the path 
M1->X1->X2->S3. 

C. Problem definition 
The communication architecture synthesis problem can be 

defined as: 
Given: 

a communication trace graph CTG=(V,E) 
the bandwidth function )(ebw , and 
the latency requirement function )(emaxdelay ,

Find the ),( IEIVIG  for CTG and the corresponding 
path function with the minimum cost, which 

(latency requirement) for every CTG edge Ee ,

)()(
)(

emaxdelayiedelay
ePATHie

,

(bandwidth requirement) for every IG edge IEie ,
)()(

)(
iemaxbwebw

ePATHie

Informally, the goal of communication architecture 
synthesis is to generate an implementation graph from the 
given CTG, which satisfies the latency requirement and the 
bandwidth requirement.  The method of evaluating the 
constraints will be case-dependent, and the later chapters 
will explain it for our case. 

IV. Communication Architecture Synthesis Flow 

Figure 3 shows our communication architecture design 
flow.  The communication synthesis flow is a simulated 
annealing flow, which tries to minimize the communication 
architecture’s size, while meeting the latency requirement of 
each of the traffics. 

A. Input specification 
The input specification of the design flow is given as a 

CTG, which can be given by the designer or derived by 
profiling the behavioral specification.  In cases when 
multi-mode specifications are given, methods proposed on 
[10] can be used.  The ports have additional properties such 
as clock speed and data bus width, so that the synthesizer 
can add clock conversion / data width conversion bridges on 
points where it is required. 

B. Encoding for bus topology exploration 
The biggest problem on implementing the simulated 

annealing flow is that it is difficult to implement a transition 
function – that is, defining the neighbors of the annealing 
state.  This is mainly because an arbitrary topology cannot 
be a feasible solution – the topology should at least have 
communication paths that the CTG requires.  Therefore, 
applying arbitrary transformations will not work. 

A possible solution would be by transforming the 
topology randomly, and then repair the topology so that the 
solution becomes feasible.  However, this is also non-trivial, 
since this will require a repair function which requires 
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Figure 2. (a) An example CTG, and (b) a IG for the CTG.
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generating a solution that has a similar cost (i.e. the gate 
count of communication architecture) to the original 
topology. 

In order to resolve this problem, we take an indirect 
approach of using a different encoding method which always 
yields a feasible solution.  The IG is generated from the 
encoding.  Thus, a move in simulated annealing 
corresponds to a transformation of the encoding, rather than 
the transformation of the bus topology itself.  The encoding 
method and the detailed implementation will be discussed in 
Section V. 

C. Implementation graph to architecture 
On each annealing phase, using the transformed IG, the 

corresponding bus architecture is generated.  Then, the 
timing analysis of the bus architecture is performed. The 
timing analysis of the logic delay of bus matrices is based on 
the bandwidth requirements and data width of the bus 
matrices. The timing analysis will determine (1) how to 
apply existing pipelining solutions to the generated 
architecture and (2) the penalty in the cost calculation of 
Section IV.D. 

For instance, in the case of AXI PL300-based cascaded 
matrix architecture [2], register slices are added into the AXI 
channels wherever the timing requirement cannot be met.  
However, if there are any cases that the timing cannot be 
fixed even with enough register slices, a penalty – the 
negative slack of the channel multiplied by a constant value 
– is added to the cost function. 

The timing information of the bus matrix is prepared 
before the communication architecture synthesis.  We will 
report how we prepared the timing information in our 
experiments with ARM AXI bus components on Section VI. 

D. Cost function of communication architecture 
The objective of communication architecture design is to 

find a communication architecture that minimizes the area 
(in gate counts) while satisfying the latency and bandwidth 
requirements of the CTG, and make all the communication 
channels meet the timing requirements.  The cost function 
in simulated annealing is defined as: 

penaltyecountgatecost _
where countgate _  represents the estimated gate count of the 
communication architecture.  penalty  is the penalty value, 
which is 0 when all the timing requirements and latency 
requirements are satisfied, and increases linearly as the 
number of paths that violates the timing and/or the number 
of CTG edges that surpasses the latency requirement 
increases. 

Due to the exponential nature of the penalty value, the 
annealing is likely to be stuck on a local optimum.  Thus, 
we use two cost functions during the simulated annealing.  
Initially, the cost function in simulated annealing is penalty .
However, as soon as penalty  converges to zero, the cost 
function is changed to penaltyecountgate _ .  This helps the 
solution to converge more quickly to a feasible one. 

V. The Encoding Method and Two-Step Simulated 
Annealing 

A. Defining the traffic group encoding 
In order to define the encoding, we define two more 

terms: 
We define a Traffic group as an unordered set of edges 
from the CTG – that is, for a traffic group TG, ETG .
We define a Traffic group encoding(TGE) as an ordered 
set of traffic groups – that is, 

}1,|{ niETGTGTGE ii

A traffic group corresponds to a switching element, such 
as a bus, crossbar, or a router.  A CTG edge in the traffic 
group represents that the traffic represented by the CTG 
passes the switching element. 

The traffic group encoding represents all the switching 
elements on the system.  The order represents the direction 
of traffic flow – that is, if 

ji TGeTGe ,  and nji1 ,
the final system has a path from the node represented by 

iTG  to the node represented by 
jTG .

We define that }1,|{ niETGTGTGE ii
 from the 

CTG = (V, E) generates ),( IEIVIG   and the path 
function )(ePATH , if and only if: 

There is a one-to-one mapping between a node 
iv  and 

TGETGi
, where IVvi

 and Vvi

For any Ee , )(ePATHiv  if and only if iTGe .

For any Ee , if )1(, njiTGeTGe ii
, there 

exists a path from 
iv  to 

jv .

For any Evve yx ),( , if 
iTGe , there exists a path 

from 
xv  to 

iv , and exists a path from 
iv  to 

yv .

The first property means that every traffic group 
corresponds to a node on the IG, which is an interconnect 
component, such as crossbars, buses, or bus matrices.   
The second property means that if the CTG edge exists on a 
traffic group, the node is part of the path that the traffic takes.  
The last two properties mean that the traffic flows only to 
the increasing order of the node number, starting from the 
source to the destination. 

The advantage of using TGEs instead of IGs for general 
optimization algorithms is that TGEs always lead to an 
implementation that satisfies the CTG.  This removes the 
requirement of a repair function, which can be quite 
complicated, because checking the CTG requirement for an 
arbitrary graph may be quite expensive. 

For example, the IG from Figure 2 is generated by the 
following TGE: 
TGE= {(M1->S1), (M1->S2), (M1->S3), (M2->S1), (M2->S3)}, 

{(M1->S2), (M1->S3), (M2->M3), (M3->S2), (M3->S3)} 

B. Generating System Architecture from Encoding 
Once the implementation graph and traffic group 

encodings are defined, generating IGs from TGEs become 
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trivial.  Figure 4 shows the pseudo-code of tge2ig, which 
generates an IG from TGE. 

To support multiple data widths and multiple clock 
domains, each group on the TGE has two additional 
properties – clock speed and data width. 

The simulated annealing starts with an empty TGE with 
the default clock speed and default data width – that is, a 
point-to-point communication architecture which resembles 
a fully-connected bus matrix.  During the simulated 
annealing, the following transformations are randomly done: 

Creating a random group with two random CTG edges 
Removing a random edge from a random group 
Merging two random groups into one 
Adding all edges from a random group to another 
random group (

jii TGTGTG )

Removing edges in a random group from a random 
group (

jii TGTGTG )

Changing a random parameter (clock speed or data 
width) of a random group. For changing clock speeds, 
we determine the candidate clock speeds by using the 
clock speeds of each individual IPs in the system, and 
use the GCD (greatest common divisor) and LCMs 
(least common multiplier) of each clocks’ pair.  For 
example, if some IPs operate on 200MHz while others 
run on 300MHz, then the crossbars may use 100 MHz, 
200MHz, 300MHz, or 600MHz. 
Adding/removing all edges from the same random 
master/slave, and 
Changing the order of two random groups 

Once the IG is generated, the system architecture is 
generated from the IG.  This step is done using these steps: 

Each switching element on the IG is mapped to a PL300 
interconnect. The edges are mapped to an AXI channel. 
If the two AXI ports have different parameters (such as 
different data widths), conversion bridges are added to 
the communication channel.  Figure 5 shows an 
example case.  For example, if there is a connection 
between a 300MHz master with 32-bit data bus, and a 
400MHz slave with 64-bit data bus, an asynchronous 
bridge and a data width converter (expander) is added in 
between the two components.  Likewise, other types of 
bridges are added in between ports with different 
characteristics. 
There are some cases that the required bandwidth of the 

channel surpasses the channel’s capacity.  For those 
channels, another channel is replicated between the two 
nodes on the IG.  Although this practice is very rare in 
real-world designs, we found that this is unlikely to be a 
final solution, because a smaller design usually can be 
generated by splitting one of the two PL300s into two 
smaller ones. 
Timing analysis is done.  For paths that cannot meet the 
timing requirement, register slices are added, thus 
pipelining the communication path. 

C. Alternative bus-matrix based implementation 
As an alternative to the TGE-based method, we have 

implemented two more methods: 
(2-layer bus matrix) Implement the shared bus and the 
bus matrix’s port using a PL300 bus matrix.  This 
method also uses cascaded bus matrices, but the number 
of levels the crossbars are cascaded is limited to two. 
(Figure 6 (a)) 
(single bus matrix) Implement the shared bus by using 
bus matrices with one master port and multiple slave 
ports, or bus matrices with one slave port and multiple 
master ports. (Figure 6 (b)) 

Both use the same encoding method, which we will call 
port partition encoding (PPE).  We define the PPE as a pair 
of sets, where the first set is the partition of all the outgoing 

function tge2ig(Graph ctg, Array<Set<Edge> > tge) 
{
 Graph ig; 
 Hashtable<Edge,Vertex> positionTable;  
 foreach(Edge e from ctg) { 
  positionTable.add(e, e.source); 
  ig.addNodeIfDoesntExist(e.source); 

ig.addNodeIfDoesntExist(e.destination);
 } 
 foreach(Set<Edge> set from tge) { 
  ig.addNode(set); 
  foreach(Edge e from set) { 

Vertex prev = positionTable.get(e); 
   ig.addEdgeIfDoesntExist(prev, set); 
   positionTable.set(e, set); 
  } 
 } 
 foreach(Edge e from ctg) { 
  Vertex prev = positionTable.get(e); 
  ig.addEdgeIfDoesntExist(prev, 

e.destination);
}
return ig; 

}

Figure 4.  A C++-like pseudo-code of tge2ig 

Figure 5. (a) an implementation graph, and (b) a corresponding architecture 
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nodes (which are masters) from the CTG, and the second set 
is the partition of all the incoming nodes (which are slaves) 
from the CTG. 

Generating the IG from PPE is trivial.  For the 2-layer 
bus matrix method, a group on the partition from the PPE 
corresponds to a node of the IG, which connects the nodes in 
the group, which is a PL300 on the final architecture.  For 
each partition, if a master on a group has traffic to a slave on 
another group, a connection is made between the two 
groups. 

For the single bus matrix method, a group on the partition 
on the PPE corresponds to the shared bus which is connected 
to the ports on the partition.  Each of the local buses is 
connected to the central bus matrix. 

D. Two-step Simulated Annealing 
An ideal simulated annealing method gives the optimal 

solution with a long runtime.  However, if the solution 
space is too large, it may require an infeasible amount of 
computation power to search the large solution space.  
Thus, we use a two-step simulated annealing.  First, the 
70% of the annealing is done within a restrictive set of bus 
topologies.  The first step may give a good starting solution 
to the second step.  Then, the last 30% is done starting with 
the result of the first step, with a method that has a wider 
design space.  We found that this approach might help, 
since TGE-based architectures have a large design space that 
requires a large number of annealing steps to yield a good 
enough solution.  Using the two-step approach will help the 
solution to converge more quickly. 

The two step approach is done by first starting the 
annealing using one of the PPE-based architectures. Then, 
after the 70% of the annealing finishes, the architecture is 
encoded to TGE, and the remaining 30% of the annealing is 
done using the TGE representation. 

VI. Experiment results 

The communication architecture synthesis flow uses the 
ARM’s AXI components [2].  The ARM AXI components 
that we use for generating the system architecture include: 

PrimeCell AXI Configurable Interconnect (PL300), 
PrimeCell Infrastructure AMBA 3 AXI Asynchronous 
Bridge (BP132), Downwards-synchronizing Bridge 
(BP133), and Upwards-synchronizing Bridge (BP134) 
for clock speed conversion, 
PrimeCell Infrastructure AMBA 3 AXI Downsizer 
(BP131) and Expander, for data bus width conversion, 
and
PrimeCell Infrastructure AMBA 3 AXI Register Slice 
(BP130) for pipelining the interconnect where the 
critical path is too long, so that the timing can meet the 
requirement. 

The timing and area information of the ARM IPs were 
obtained by synthesizing the RTL code using Synopsys 
Design compiler using Samsung’s 90nm low-voltage ASIC 
process.  The gate counts and port I/O delays were obtained 
from the synthesis reports of Design Compiler.  The IPs 
was synthesized using all possible combinations of 
configuration parameters.  For example, in the case of 
PL300s, we synthesized 286 configurations with 1 to 9 
master ports, 1 to 16 slave ports, and two possible data bus 
widths (32 or 64). 

Our experiment was done using 120 synthetic CTGs 
generated using a CTG generator.  This was mainly 
because we could not find any publicly available CTG large 
enough that our approach can be found useful.  The CTGs 
that we used consists of 6 masters and 11 slaves for the 
smallest ones, and 31 master and 71 slaves for the largest 
ones.  The CTG generator first generates a reasonable 
number of components – processors, DSPs, custom logic, 
peripherals, or SRAM/DRAM blocks, and CTG edges are 
generated according to each IP’s characteristic.  For 
example, DSPs typically have two master ports, where one 
of them have a low-bandwidth read access path to a 
SDRAM block (which represents instruction stream), and 
the other port with high-bandwidth read/write accesses to 
local buffers and global SDRAM blocks (which represents 
data streams). 

Each of the CTGs were synthesized using four synthesis 
methods –TGE, single bus matrix (SBM), two-layers of bus 
matrices(2BM), and an two-phase approach, where the first 
70% of the annealing is done using either 2BM or SBM 
(depending on the number of nodes), and the last 30% is 
done using TGE.   Each of the simulated annealing ran  

)()()(10 trafficsizeofslavesizeofmastersizeof  iterations, 
where )(mastersizeof , )(slavesizeof  and )(trafficsizeof  each 
represents the number of masters, number of slaves, and the 
number of CTG edges, respectively. 

We have implemented the communication architecture 
synthesis flow in Java 5.0, which executes on Sun’s Java 
VM 5.0[11].  Since running 480 synthesis tasks requires a 
lot of computation power, we implemented a simple 
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Figure 6 Two alternative bus matrix architectures 
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in-house synthesis farm, which consists of four x86 
machines with different processors, different amount of 
RAM, and different operating systems. 

TABLE I 
Synthesis result of 120 CTGs1

Method SBM 2BM TGE Two
phase

Average size 
(geometric mean) - 6.403 7.172 5.325

Number of 
successful
synthesizes 

78 120 119 120All designs 

number of best 
results among 4 
methods 

33 1 31 55

Average size 
(geometric mean) 2.991 3.641 3.097 3.159

Number of 
successful
synthesizes 

27 27 27 27
small 27 
designs
( < 25 ports) 

number of best 
results among 4 
methods 

9 0 4 14

Average size 
(geometric mean) - 9.434 15.799 8.309

Number of 
successful
synthesizes 

2 22 22 22
large 22 
designs
( > 45 ports) 

number of best 
results among 4 
methods 

1 0 5 16

Table I shows the experiment results for the 120 designs.  
The three methods that generate cascaded bus matrices 
successfully generate designs that meet the timing 
requirements for all 120 designs, while the SBM method 
failed to generate a design for approximately half of the 
CTGs.  The situation became worse when the number of 
components increased to more than 45, where almost none 
of the CTGs could be successfully synthesized.  This shows 
that it is required to use multiple cascaded bus matrices 
when the system gets larger. 

Among the three cascaded bus matrix methods, the 
two-phase approach’s result was better than both TGE-based 
method and 2-layer bus matrix methods.  The reason that 
TGE’s average was much higher was because the TGE 
method and 2BM method had a lower probability to 
generate a reasonable solution – thus, the result was 10x 
bigger for some CTGs, while other CTGs had marginal 
difference (around 15% size difference). 

For all four methods, execution time was tens of seconds 
for the smallest designs, and around 2 hours for the largest 
designs.

VII. Conclusions 

In this paper, we present a novel approach based on 
cascaded bus matrix to synthesize communication 

                                                       
1 The size of the generated architecture is in the number of gates 
normalized to an arbitrary value.  We could not release the 
number of gates, due to the licensing agreements with our IP 
vendor. 

architectures for large systems with nearly 100 IP’s. We 
present two methods, an encoding method and two-step 
simulated annealing, for efficient design space exploration. 
Experiment results show that our approach is able to 
synthesize communication architectures with hundreds of 
components, which none of the previous approaches were 
capable.

Still, there is a lot of more research to do. Since our 
optimization flow requires quite a lot of computation power, 
and the architecture required to synthesize is expected to 
grow exponentially, better optimization approaches are 
needed. We plan to extend our approach using newer 
meta-heuristic optimization algorithms, such as the popular 
genetic algorithm, or ant colony optimization [12]. 

Additionally, since our flow does not run simulations on 
every phase of performance and cost calculation, but 
estimates, especially, the performance, there must be an 
accurate system performance modeling method. We plan to 
add statistical communication modeling methods, so that we 
can obtain accurate communication architecture 
performance without simulating the system within a small 
error margin. 
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