
Convergence-Provable Statistical Timing Analysis with
Level-Sensitive Latches and Feedback Loops

Lizheng Zhang, Jengliang Tsai, Weijen Chen, Yuhen Hu, Charlie Chung-Ping Chen
ECE Department, University of Wisconsin, Madison, WI53706-1691, USA

Email:{lizhengz,weijen,jltsai}@cae.wisc.edu, {hu,chen}@engr.wisc.edu

ABSTRACT
Statistical timing analysis has been widely applied to predict
the timing yield of VLSI circuits when process variations be-
come significant. Existing statistical latch timing methods
are either having exponential complexity or unable to treat
the random variable’s self-dependence caused by the coexis-
tence of level-sensitive latches and feedback loops.

In this paper, an efficient iterative statistical timing algo-
rithm with provable convergence is proposed for latch-based
circuits with feedback loops. Based on a new notion of iter-
ation mean, we prove that the algorithm converges uncon-
ditionally. Moreover, we show that the converged value of
iteration mean can be used to predict the circuit yield dur-
ing design time. Tested by ISCAS’89 benchmark circuits,
the proposed algorithm shows an error of 1.1% and speedup
of 303× on average when compared with the Monte Carlo
simulation.

1. INTRODUCTION
With ever decreasing feature size of nano-scale integrated

circuits, the variation of manufacturing parameters becomes
more and more significant and must be considered during
design. [1] Classical corner-based timing analysis produces
timing predictions that are often too pessimistic and grossly
conservative because we have only few chance to have pa-
rameters of all gates working on their corner values. Statis-
tical static timing analysis (SSTA) that characterizes time
variables as statistical random variables offers a better ap-
proach for more accurate and realistic timing prediction.

Correlated time variables due to spatial correlation or re-
convergence fanout present themselves as a major challenge
when applying SSTA to complicated circuits. Such correla-
tions have been studied extensively in literatures [2–9]. In
particular, an extended canonical time model has been pro-
posed in [6] to represent these correlations in a compact
form to be preserved during propagation of the timing ran-
dom variables.

However, most of the existing SSTA methods only com-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASP-DAC 2005, Jan. 24-27, 2006, Yokohama, Japan
Copyright 2006 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

pute the time variable distribution for combinational cir-
cuits. Although with some minor modifications, the exist-
ing SSTA method may be extended to deal with flip flop
based sequential circuits, we have yet to find an effective
SSTA method for sequential circuits consisting of level sen-
sitive latches and feed-back loops. Specifically, with the
presence of feedback loop, the timing-wise transparent level-
sensitive latches may cause timing random variables to be
self-dependent. In other words, a timing random variable
will be dependent on a time variable with the same name,
but instantiated in the previous iteration. Such a self-dependence
presents itself as a new type of correlation that is caused by
the coexistence of latches and feedback loops. An example
of self-dependence is illustrated in figure 1.

Previously, a SSTA method for latch-based pipeline de-
sign have been proposed [10]. However, the issue of self-
dependence is not addressed. In [11], a structural method is
proposed to deal with the feedback loops by applying graph
sorting algorithms. However, the computation complexity
of these algorithms may grow exponentially [11].

�����
��

�

�	
��	��	�������

���

���

���

���

����	���	��������	�
������	��

Figure 1: A simple latch circuit with a feedback loop and
the possible divergence of the departure time distribution.

In classical deterministic timing analysis, an iterative latch
timing algorithm, i.e. the SMO algorithm, has been pro-
posed [12–14] to deal with the self dependence. In order to
generalize the SMO algorithm to handle random time vari-
ables, one faces a convergence problem that can be briefly
explained as follows: In deterministic timing analysis, each
time variable assumes a deterministic value. Convergence is
guaranteed if each time variable is bounded within a prede-
fined, finite range. However, with SSTA, each time variable
is modeled with a mean value and a standard deviation.
Even the mean value can be bounded, the corresponding
variance may still diverge. This is illustrated in the figure 1.

In this paper, we present a solution to such a convergence
problem. Conceptually, we argue that the notion of circuit
convergence should be differentiated from the overall algo-

rithm convergence. Therefore, even the actual data arrival
time in the circuit may diverge, the convergence of the algo-
rithm will not necessarily be affected. We proposed a novel
SSTA algorithm, StatITA, for latch-based circuits with feed-
back loops based on a quantity of iteration mean which is the
average latest data arrival time per iteration. We prove that
StatITA converges unconditionally after sufficient number of
iterations. Moreover, we show that the converged value of
the iteration mean can be used to predict the circuit yield.

The rest of the paper is organized as following: Section
2 presents preliminary of the latch timing analysis and the
graph model of the circuit with feedback loops; Section 3 in-
troduces the theory of our iterative timing method; Section
4 summarizes the StatITA algorithm; Section 4 presents the
C/C++ implementation and testing results; Section 5 gives
the conclusions.

2. LATCH TIMING PRELIMINARY

T = T 0
i + T 1

i : clock cycle time

T 0
i : clock low time at latch i

T 1
i : clock high time at latch i

Hi: hold time of latch i
Si: setup time of latch i
Ci: rising clock edge arrival time at ith latch
ai: earliest data arrival time at ith latch
Ai: latest data arrival time at ith latch
di: earliest data departure time at ith latch
Di: latest data departure time at ith latch
δij : minimum combinational delay from latch i to j
∆ij : maximum combinational delay from latch i to j
λij = δij − T : adjusted minimum delay
Λij = ∆ij − T : adjusted maximum delay

Y : total circuit yield
N : total number of latches in the circuit
si: setup time violation at ith latch
hi: hold time violation ith latch
sc: critical setup time violation of the circuit
hc: critical hold time violation of the circuit

pm: number of latches in the feedback loop m
Gm: cycle mean of the feedback loop m
Gc: critical cycle mean of the circuit
Ok

i : iteration mean of latch i at kth iteration

Figure 2: Notation used in this work

��

	
�
	

��

��

�����

�

�����
�

���� �

�� �

��
�
�

�
�

��

��

��

��
���

��

��
��

��� ���

���
�����

Figure 3: Latch Timing Diagram

It is common for high-end VLSI circuits to have feedback
loops. If level-sensitive latches are used as the sequential
elements, iterative methods will be applied for circuit timing
due to the possible self-dependence issue.

Figure 3 shows a latch j and one of its input latch qi that
has combinational output paths to latch j. All latches are
assumed to be active-high, but no generality is lost since no
restriction is posted on clocks. So the data departure time
of latch qi at the kth iteration will be:

dk
qi

= max(ak
qi

, Cqi) (1)

Dk
qi

= max(Ak
qi

, Cqi) (2)

On the other hand, the data arrival time of latch j will be
decided by its all input latches q1, q2, ... as:

ak+1
j = min(dk

q1 + λq1j , d
k
q2 + λq2j , ...) (3)

Ak+1
j = max(Dk

q1 + Λq1j , D
k
q2 + Λq2j , ...) (4)

To make the circuit free from delay faults, the setup and
hold time constraints must be satisfied at any latch j =
1, 2, ..., N after sufficient iterations:

h∞
j = (Cj − T 0

j + Hj) − a∞
j ≤ 0 (5)

s∞j = A∞
j − (Cj + T 1

j − Sj) ≤ 0 (6)

where s∞j and h∞
j are the setup and hold time violations for

latch j after sufficient iterations. It is more convenient to
define the critical setup time violation, s∞c and critical hold
time violation, h∞

c as:

h∞
c = max(h∞

1 , h∞
2 , ..., h∞

N) (7)

s∞c = max(s∞1 , s∞2 , ..., s∞N) (8)

with which the setup and hold time constraints can be ex-
pressed compactly as:

h∞
c ≤ 0 and s∞c ≤ 0 (9)

The above discussion, although it is intended to deal with
the deterministic timing analysis, is also applicable when
process variations are considered except that all time vari-
ables involved will become random variables.

2.1 Circuit Convergence
The major concern for an iterative latch timing method

is the circuit convergence:

Definition 1. A latch-based sequential circuit with feed-
back loops is said to converge during timing iterations if
and only if both the latest and earliest data arrival times at
the input of every latch are finite values after infinite number
of iterations.

According to the monotonicity of time variables involved
in the iterative timing analysis, [13], it is impossible to have
data arrival times, either the latest or the earliest, to be fi-
nite but oscillating among several values. So if a circuit con-
verges as defined above, all of its time variables will converge
to a fixed value or, in statistical case, to a fixed distribution.

Following theorem can simplify our convergence discus-
sion by just focusing on the latest data arrival time only:

Theorem 1. A latch-based circuit with feedback loops will
converge during timing iterations if and only if every latest
data arrival time in the circuit has an upper bound.

Proof. According to equations (1) and (2), both latest
and earliest data departure time of any latch qi will be lower
bounded by the clock arrival time: dk

qi
≥ Cqi and Dk

qi
≥ Cqi .

So the latest and earliest data arrival times latch j will also
have a finite lower bound:

ak+1
j ≥ min(λq1j + Cq1 , λq2j + Cq2 , ...)

Ak+1
j ≥ max(Λq1j + Cq1 , Λq2j + Cq2 , ...)

Obviously, the earliest data arrival time of every latch
is always upper bounded by the latest data arrival time of
the same latch. So if all the latest arrival times in the cir-
cuit have upper bound, then circuit will converge as defined
above. This proves the sufficiency. The necessity is trivial
according to the definition of the convergence.

2.2 Reduced Timing Graph
Timing iterations will be done at each latch in the cir-

cuit. To illustrate such iterations graphically, the entire
circuit is partitioned into two parts: latches and combina-
tional feedback sub-circuit. A reduced timing graph, {V , E},
is then constructed to represent the original circuit: latches
are modeled by nodes of ni ∈ V and the combinational feed-
back sub-circuit is abstracted as directed edges of eij ∈ E
with weight of the adjusted maximum delay Λij .

������		

���
���
���������
�����������������

�
�

�

�

�

�

��������

���������

��������

������	��

���������

�����	��

������
��

�����	��

������	��

�

�����	�

� ������	!�

Figure 4: The reduced timing graph of an example circuit

A simple example of such reduced timing graph is shown
in figure 4 where a circuit with 8 latches are modeled.

3. ITERATIVE TIMING THEORY
The main difficulty for iterative latch timing, as men-

tioned before, is the existence of feedback loops in the re-
duced timing graph. Every loop m with pm latch nodes in
it will have a cycle mean(Gm) defined as the average edge
weight in the loop:

Gm =
1

pm

∑

eij∈m

Λij =
1

pm

∑

eij∈m

∆ij − T

and pm is usually called cycle length.
For example, in the reduced timing graph shown in figure

4, latch nodes 1 → 2 → 3 → 1 will form a loop with length
of 3, and the cycle mean of this loop is G = (Λ12 + Λ23 +
Λ31)/3 = −1/3.

There will usually many loops existing in the reduced tim-
ing graph. Among them, the loop with the most positive
cycle mean is with the most importance:

Definition 2. The critical cycle mean of the reduce
timing graph, Gc, is the larger value between 0 and the
largest cycle mean among all possible loops:

Gc = max(0,G1, G2, ...) ≥ 0 (10)

where G1, G2, ... are cycle means for all loops 1, 2, ... in the
reduced timing graph.

For example, there are totally 4 loops in the example cir-
cuit shown in figure 4: loop 1(1 → 2 → 3 → 1), loop
2(1 → 4 → 5 → 6 → 3 → 1), loop 3(4 → 5 → 6 → 4)
and loop 4(5 → 5). The cycle means of these loops are
G1 = −1/3, G2 = 1/5, G3 − 1/3 and G4 = −1. So the crit-
ical cycle mean is Gc = max(0,−1/3, 1/5,−1/3,−1) = 1/5.

The critical cycle mean, Gc, revealed in later sections, is
one of the most important circuit parameters determining
the yield of the circuit with feedback loops. It is notice-
able the similarity between the critical cycle mean Gc and
the well-known concept of maximum cycle mean(MCM) in
general graph theory. In deterministic cases, efficient algo-
rithms are available to compute the MCM [15,16]. But these
algorithms can not be directly applied when Gc becomes a
random variable because of process variations. We here,
instead, propose to compute Gc with an iterative method
using the key idea of iteration mean:

Definition 3. At every iteration k, each latch node i in
the reduced timing graph will have an iteration mean de-
fined as the latch’s average latest data arrival time per iter-
ation:

Ok
i =

Ak
i

k + 1
(11)

3.1 Graphical Imitation of Iterative Timing
Graphically, the update of the latest data arrival times at

all latches, equations (2) and (4), can be imitated by one step
of simultaneous “hop” of time variables at all nodes along
all edges in the reduce timing graph with the following rules:

1. If a time variable hops along an edge, the edge weight
is added.

2. If a time variable hops into a node, it will continue
hopping only if it arrives later than the node’s clock.
Otherwise, it will “die” and a new time variable with
the value of the clock arrival time at the node starts
hopping.

3. If a time variable hops out of a node with multiple out-
put edges, then multiple “clones” of the time variable
will hop along all output edges.

4. If multiple time variables hop towards a node simulta-
neously, only the one with largest value will hop into
the node.

It is clear that a time variable may not always hop along
a given loop m in the reduce timing graph because it could
possibly die. So it is meaningful to pickup those loops that
are actually being followed by time variables and call them
timing loops.

Definition 4. If a time variable starts hopping at a node
and it comes back to the same node later, then the loop
through which the time variable passes is called a timing
loop.

The relationship between a latch node and a timing loop
can be one of the following three cases: (1) A node is within
a timing loop if it is a node member of the timing loop; (2)
node is dominated by a timing loop if it doesn’t belong to
the timing loop but the time variable hopping into it orig-
inates in the timing loop; (3) a node is independent on
a timing loop if it is neither within nor dominated by the
timing loop.

For example, in figure 4, if the loop 1 → 4 → 5 → 6 →
3 → 1 becomes a timing loop, then node 8 will be indepen-
dent to the timing loop and node 7 will be dominated by
the timing loop.

3.2 Compute Gc from Iteration Mean
To prove the convergence of the iterative mean, we first

prove a theorem which is valid for any loop in the reduce
timing graph.

Theorem 2. If there is a loop, m, with cycle mean of Gm

and length of pm, in the reduced timing graph, then for any
iteration index of k ≥ pm and any node mi(i = 1, 2, ..., pm)
in the loop, the latest data arrival time will satisfy the fol-
lowing inequality:

Ak
mi

≥ Ak−pm
mi

+ pmGm (12)

where the equality holds if m becomes a timing loop.

Proof. Assuming time variable Ak−pm
m1 of node m1 at

iteration k − pm tries to hop to node m2, from iteration
equations (2) and (4), we have:

Ak−pm+1
m2 ≥ max(Ak−pm

m1 , Cm1) + Λm1,m2

≥ Ak−pm
m1 + Λm1,m2

where the equality holds if Ak−pm
m1 survives the hop from

node m1 to node m2. Iteratively making such hops for pm

times along the loop of m, we will return back to node m1

and

Ak
m1 ≥ Ak−pm

m1 + Λm1,m2 + Λm2,m3 , ..., +Λmpm ,m1

= Ak−pm
m1 + pmGm

where the equality holds only when the time variable sur-
vives every step of hopping which means the loop is a timing
loop.

With this theorem in hand, we are then ready to present
our first major contribution:

Theorem 3 (Convergence of Iteration Mean). No
matter what is the initial state of the reduced timing graph,
the sequence of the iteration mean O0

j , O1
j , O2

j , ..., Ok
j , ... for

any node j will always converge to one of the following two
values after sufficient number of iterations:

1. O∞
j = Gm if node j is within or dominated by a timing

loop m with cycle mean Gm.

2. O∞
j = 0 if node j is independent on any timing loop.

Proof. In case 1, if node j is within the timing loop m
whose length is pm after r iterations, then for any index
k ≥ r + pm equality holds in theorem 2. Since there will
exist an iteration index r ≤ t ≤ r + pm and an integer
n = 0, 1, 2, ... such that k = npm+t, after applying theorem 2
for n times, the latest data arrival time of node j at iteration
k will be Ak

j = At
j + npmGm = At

j + (k − t)Gm. So the
iteration mean:

O∞
j = lim

k→∞
Ak

j

k + 1
= lim

k→∞
(k − t)Gm

k + 1
= Gm

If node j is not within but dominated by the timing loop
m, then we define two constants Σ+ and Σ− as:

Σ+ =
∑

Λi,j>0

Λi,j and Σ− =
∑

Λi,j<0

Λi,j

which are clearly finite values.
With these two constants, if the time variable of node j is

x hops away from node mi in the timing loop m, then the
latest data arrival time of node j at kth iteration will be:

Ak−x
mi

+ Σ− ≤ Ak
j ≤ Ak−x

mi
+ Σ+

Since Σ+ and Σ− are finite constants, then

O∞
j = lim

k→∞
Ak−x

mi

k + 1
= Gm

which proves the first case of the theorem.
For case 2, all time variables hopping into node j must

start from a finite value such as clock arrival times or pri-
mary input arrival times. So the latest data arrival time
at node j must be finite for any iteration index k. So the
iteration mean of the node obviously converges to zero.

For the example graph shown in figure 4, the convergence
of the iteration mean of some latch nodes is graphically il-
lustrated in figure 5:

0 5 10 15 20 25 30
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Iteration Mean of the Example Circuit

Iteration Index k

Ite
ra

tio
n

M
ea

n

Latch Node 1
Latch Node 3
Latch Node 4

Figure 5: The iteration mean of three nodes in the
example circuit of figure 4 and their convergence trend.

In [10], authors proposed to use the graph sorting algo-
rithm which has exponential complexity in the worst cases.
By substituting theorem 3 into equation (10), the critical
cycle mean can be computed much simpler as:

Gc = max(O∞
1 , O∞

2 , ..., O∞
N) (13)

where O∞
1 , O∞

2 , ..., O∞
N are converged iteration means for all

N latches in the circuit.

3.3 Circuit Yield Prediction
In section 3, we defined a circuit parameter of critical cycle

mean and claim that it is closely relating the circuit yield.
We will establish this relationship solidly in this section.

Theorem 4 (Circuit Yield Computation). A cir-
cuit will converge to a finite state if and only if its reduced
timing graph has zero critical cycle mean: Gc = 0.

Proof. If Gc > 0, then according to the definition, there
will be at least one loop whose cycle mean is Gc. Then ap-
plying equation 12 for enough times, the latest data arrival
time in this loop can be arbitrarily large. Using theorem 1,
the circuit will not converge in this case. Since Gc ≥ 0 from
definition, the necessity of the first assertion is proved.

If Gc = 0 then we have two cases. The first case is that
there will be no timing loop in the reduced timing graph
after sufficient number of iterations; This means that even-
tually all time variables hopping in the graph will come from

finite values and so that all latest data arrival times in the
graph will be finite values. So circuit will converge by defi-
nition in section 2.1.

The second case is that there are some timing loops ex-
isting in the reduced timing graph after sufficient number of
iterations. In this case, for any of such timing loop m, its
cycle mean, Gm, must be non-positive since Gm ≤ Gc ≤ 0.
So for any node mi in m, applying theorem 2 for sufficiently
large iteration index k:

Ak
mi

= Aq
mi

+ (k − q)Gm ≤ Aq
mi

where q is a large but finite iteration index satisfies k =
q + npm with loop length pm and integer n. Since Aq

mi
is

obviously finite, the latest data arrival time must be upper
bounded and the circuit converges in this case too. This
proves the sufficiency.

Circuit will fail if it diverges since the latest data arrival
time of some latches will go to infinity after sufficient num-
ber of iterations. But the circuit is not guaranteed to be
functional even it converges in iterations. The setup and
hold time constraints have to be additionally satisfied in or-
der to be free of delay faults. So the overall timing yield of
the circuit will be:

Y = Pr{Gc = 0 ∩ s∞c ≤ 0 ∩ h∞
c ≤ 0}

= Pr{max(Gc, s
∞
c , h∞

c) = 0} (14)

4. ITERATIVE TIMING ALGORITHM
The iterative latch timing algorithm, StatITA, is shown

in figure 6 based on the theory in section 3.
StatITA takes the circuit as an input and compute the

yield of the circuit at a given clock cycle time. The key
iteration part of the algorithm is the repeat block from line
7 to line 19 where the convergence check is done in line 14.

StatITA has been implemented in C/C++ and tested on
the ISCAS’89 benchmark circuits. The SSTA core is imple-
mented based on the work from [6].

4.1 Accuracy of StatITA
All known tasks of statistical timing analysis can equiv-

alently be accomplished by Monte Carlo simulations. The
iterative timing analysis for latch-based circuits with feed-
back loops is not an exception either. So an iterative Monte
Carlo timing analysis with 10,000 repetitions is also imple-
mented in C/C++, MontITA, in parallel with StatITA.

Figure 7 shows the distributions of the critical cycle mean
Gc computed from both StatITA and MontITA for circuit
s526 at a clock cycle of 400ps. The close match between
StatITA and MontITA clearly shows the accuracy of the
proposed iterative statistical latch timing algorithm.

The first application of a fast and accurate statistical latch
timing algorithm is to predict the minimum clock cycle time
at which the circuit will meet a yield goal. For this purpose,
we define the value of T97 as the minimum clock cycle time
at which a given circuit will have a 97% timing yield.

Table 1 shows the numerical T97 comparison between Mon-
tITA and StatITA. The average prediction error for the tested
circuits is 1.1% which again demonstrates the accuracy of
the proposed algorithm.

4.2 Performance of StatITA

1: procedure StatITA(ClockCycle T)
2: for (each latch i) do � initialization
3: Ci = setClockArrivalT imeForLatch(i)
4: a0

i = 0; A0
i = 0; O0

i = 0;
5: end for
6: k = 1;
7: repeat � iteration starts

8: {ak
i , Ak

i }=statistiticalT iming(ak−1
i , Ak−1

i);
9: done = true;
10: for (each latch i) do
11: Ok

i = Ak
i /(k + 1);

12: mean = |µ
Ok−1

i −Ok
i
|;

13: std = σ
Ok−1

i −Ok
i

14: if mean ≥ threshold ∪ std ≥ threshold then
15: done = false; � Not converged yet
16: end if
17: end for
18: k = k + 1;
19: until done � iteration ends
20: k = k-1;
21: Gc = 0; s∞c = −∞; h∞

c = −∞;
22: for (each latch i) do
23: Gc = max(Ok

i , Gc);

24: sc = max(Ak
i − (Ci + 0.5T − S), s∞c);

25: hc = max((Ci − 0.5T + H) − ak
i , h∞

c);
26: end for
27: Y = Pr{max(Gc, s∞c , h∞

c) = 0}; � circuit yield
28: end procedure

Figure 6: Iterative timing analysis algorithm StatITA

−20 0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Time[ps]

P
ro

ba
bi

lit
y

D
en

si
ty MontITA

StatITA

(a) p.d.f. of Gc for s526

−20 0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time[ps]

P
ro

ba
bi

lit
y MontITA

StatITA

(b) c.d.f. of Gc for s526

Figure 7: Critical cycle mean Gc for circuit s526 computed
from StatITA and MontITA at clock cycle of 400ps

As reported in almost all SSTA works, Mont Carlo simula-
tion is generally used as a “golden” method to evaluate the
effect of process variations in the circuit timing. But the
problem to directly apply Mont Carlo simulation in large
circuit timing is the excessive CPU time it needs. This per-
formance problem will be obviously more severe in iterative
timing since each Monte Carlo sample will need many iter-
ations to get the converged timing result.

From table 1, the excessive computation time needed by
the MontITA is obvious. The average speedup of StatITA
over MontITA is 303×.

The iteration core of statistical timing analysis is linear
to the number of gates in the circuit according to [6]. The
total number of iterations is determined by the convergence
threshold and the circuit topology, not the size of the cir-
cuit. So the proposed StatITA algorithm will have linear
complexity with respecting to the circuit size. This con-
clusion is clearly demonstrated in figure 8 where the linear
trend of the run time with respecting to the gate number

T97[ps] CPU Time[s]
Circuits Gates Latches StatITA MontITA Error StatITA MontITA Speedup

s298 130 14 443 452 2.0% 2.14 320 150x
s526 196 21 465 469 0.9% 5.76 694 120x
s641 173 19 999 998 0.1% 1.17 372 320x
s820 279 5 777 788 1.4% 1.35 692 513x
s953 401 29 862 858 0.5% 3.32 1041 314x
s1423 616 74 2088 2051 1.8% 16.0 2083 130x
s5378 1517 179 764 780 2.1% 106 12372 117x
s9234 1827 211 859 858 0.1% 101 19073 189x
s13207 3516 638 1242 1246 0.3% 231 41571 180x
s15850 3889 534 1189 1199 0.8% 540 61044 113x
s38417 11543 1636 1544 – – 1468 200hr* 490x*
s38584 12389 1426 1430 – – 1209 303hr* 903x*
Average – – – – 1.1% – – 303x

Table 1: 97% yield clock cycle(T97) and CPU time comparison between StatITA and MontITA.
(*)Estimation is from 100 repetitions and the accuracy of StatITA is not evaluated for these circuits.

0 2000 4000 6000 8000 10000 12000 14000
0

500

1000

1500

Gate Counts

R
un

 T
im

e[
s]

(a) CPU time v.s. gate num-
ber

0 500 1000 1500 2000
0

500

1000

1500

Latch Counts

R
un

 T
im

e[
s]

(b) CPU time v.s. latch
number

Figure 8: Run time of StatITA v.s. circuit size

and latch number in the circuit is shown.

5. CONCLUSIONS
A novel iterative timing statistical algorithm.StatITA, for

latch-based circuits with feedback loops is proposed and its
convergence during iterations is both theoretically proved
and experimentally demonstrated. A novel concept of it-
eration mean is proposed to decide the convergence of the
algorithm and the relationship between the converged iter-
ation mean and circuit yield under process variations are
founded both theoretically and experimentally.

Tested by the ISCAS’89 benchmark circuits, the proposed
algorithm shows an error of 1.1% and 303× speedup on av-
erage when compared with Monte Carlo simulations.

6. ACKNOWLEDGEMENT
This work was partially funded by TSMC, UMC, Faraday,

SpringSoft, National Science Foundation under grants CCR-
0093309 & CCR-0204468 and National Science Council of
Taiwan, R.O.C. under grant NSC 92-2218-E-002-030. Also
great thanks to professor Barry D. Van Veen for the great
discussions.

7. REFERENCES
[1] S. Nassif, “Within-chip variability analysis,” Electron

Devices Meeting, 1998. IEDM ’98 Technical Digest.,
International, pp. 283 – 286, Dec 1998.

[2] C. S. Amin, N. Menezes, K. Killpack, F. Dartu, Y. Ismail,
U. Choudhury, and N. Hakim, “Statistical static timing
analysis: How simple can we get?” 42th Design
Automation Conference, DAC’05, 2005.

[3] J. Le, X. Li, and L. Pileggi, “Stac: statistical timing
analysis with correlation,” Design Automation Conference,
2004. Proceedings. 41st, pp. 343 – 348, June 2004.

[4] H. Chang and S. S. Sapatnekar, “Statistical timing analysis
considering spatial correlations using a single pert-like
traversal,” ICCAD’03, pp. 621–625, Nov 2003.

[5] C. Visweswariah, K. Ravindran, and K. Kalafala,
“First-order parameterized block-based statistical timing
analysis,” TAU’04, Feb 2004.

[6] L. Zhang, W. Chen, Y. Hu, and C. C. Chen, “Statistical
timing analysis with extended pseudo-canonical timing
model,” DATE’05, March 2005.

[7] M. Orshansky, C. Spanos, and C. Hu, “Circuit performance
variability decomposition,” 4th International Workshop on
Statistical Metrology, 1999. IWSM. 1999, June 1999.

[8] S. Tsukiyama, M. Tanaka, and M. Fukui, “A statistical
static timing analysis considering correlations between
delays,” Proceedings of the 2001 conference on Asia South
Pacific design automation, January 2001.

[9] F. N. Najm and N. Menezes, “Yield estimation and
optimization: Statistical timing analysis based on a timing
yield model,” Proceedings of the 41st annual conference on
Design automation, 2004.

[10] M. C.-T. Chao, L.-C. Wang, K.-T. Cheng, and S. Kundu,
“Static statistical timing analysis for latch-based pipeline
designs,” IEEE/ACM International Conference on
Computer Aided Design, 2004. ICCAD-2004, pp. 468 –
472, 2004.

[11] R. Chen and H. Zhou, “Clock schedule verification under
process variations,” IEEE/ACM International Conference
on Computer Aided Design, 2004. ICCAD-2004, pp. 619 –
625, Nov 2004.

[12] K. A. Sakallah, T. Mudge, and O. Olukotun, “checktc and
mintc: timing verification and optimal clocking of
synchronous digital circuits,” IEEE International
Conference on Computer-Aided Design, 1990. ICCAD-90,
pp. 552 – 555, 1990.

[13] T. Szymanski and N. Shenoy, “Verifying clock schedules,”
IEEE/ACM International Conference on Computer-Aided
Design, 1992. ICCAD-92, pp. 124 – 131, 1992.

[14] J.-F. Lee, D. Tang, and C. Wong, “A timing analysis
algorithm for circuits with level-sensitive latches,” IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 15, pp. 535 – 543, May 1996.

[15] R. M. Karp, “A characterization of the minimum cycle
mean in a digraph,” Discrete Mathematics, vol. 23, pp.
309–311, 1978.

[16] S. M. Burns, “Performance analysis and optimization of
asynchronous circuits,” PhD Thesis, California Institute of
Technology, 1991.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

