
Lazy BTB: Reduce BTB Energy Consumption Using Dynamic Profiling

Abstract- In this paper, we propose an alternative BTB design,
called lazy BTB, to reduce the BTB energy consumption by
filtering out the redundant lookups. The most distinct feature of
the lazy BTB is that it dynamically profiles the taken traces
during program execution. Unlike the traditional design in
which the BTB has to be looked up every instruction fetch, by
introducing an additional field to record the trace information,
our design can achieve the goal of one BTB lookup per taken
trace. The experimental results show that with a negligible
performance degradation the lazy BTB can reduce the BTB
energy consumption by about 77% on average for the
MediaBench applications.

I. Introduction
It is well known that the control hazards caused by the

branch instructions are the major bottleneck in developing
high performance processors. The most common solution to
the control hazards is to introduce a specific hardware table,
called branch target buffer (BTB). A BTB is a small
associative memory that caches recently executed branch
addresses and their target addresses. The purpose of the BTB
is to provide early branch identification and its target address
before the instruction is decoded. Thus, traditionally, the
BTB has to be always looked up during instruction fetch
stage. Because the BTB is actually a set-associative cache
which is usually implemented using arrays of densely packed
SRAM cells for high performance, the energy consumption
of the BTB is considerable. For example, the Pentium Pro
consumes about 5% of the total processor energy in the
equipped 512-entry BTB [1].

The related techniques for BTB energy savings can be
classified into two categories. One is to reduce the energy
consumption per BTB lookup [2] [3], and the other is to
reduce the number of BTB lookups [4] [5]. Based on the
observation that reveals most BTB lookups are redundant, in
this paper we propose an alternative BTB design, called lazy
BTB, which aims to reduce the number of redundant BTB
lookups. The key idea behind our design is to look up the
BTB only when the instruction is likely to be a taken branch.
We augment the conventional BTB organization with an
additional field, called taken trace size (TTS) field, to store
the instruction number between the predicted target and the
next taken branch, referred to as a taken trace. We have
developed a dynamic taken trace profiling technique which
can collect the sufficient taken trace information during
program execution. According to the profiled data from the
previous runs, our design can conditionally skip the BTB
lookup to reduce the energy consumption.

The distinct features of our design are summarized as
follows. First, the lazy BTB is a software independent

technique. Without any compiler instrument, it can
dynamically profile the taken traces during program
execution. Second, the lazy BTB can achieve the goal of one
BTB lookup per taken trace. It is more energy efficient than
other related work [4][5] that achieve one BTB lookup per
basic block, because a taken trace contains more than one
basic block. We use SimpleScalar [6] to perform the
execution-driven simulation of MediaBench [7], and the
BTB energy consumption are estimated by using CACTI [8]
configured with 0.18µm technology. The results show that
by eliminating a large amount of redundant lookups, our
design can reduce the total energy consumption of BTB
lookups by 56%~88% with a 1.7% IPC penalty.

The rest of this paper is organized as follows. Section 2
presents our motivation and the characteristics of BTB
lookups, which reveals most BTB lookups are redundant. In
Section 3, we describe the proposed lazy BTB in detail,
including the necessary hardware augmentations. Then, the
experimental results, including the impact of our design on
energy reduction and performance, are given in Section 4,
and Section 5 offers some brief conclusions.

II. Branch Target Buffer (BTB)
Pipelining is the key implementation technique to the

high performance processors. As introduced in [9], for most
RISC processors the widely used pipeline model is the
typical five-stage pipeline, which is composed of instruction
fetch (IF), instruction decode (ID), execution (EX), memory
access (MEM), and write back (WB) stages. When a taken
branch is executed, the branch target address is normally not
determined until the end of ID. This implies that the
pipelined processor needs to know the path of the branch (in
order to fetch the next instruction) before it has been
determined. There are two possible solutions to this problem.
One is waiting for the branch to finish the target address
calculation and the other is to continue fetching the
instructions, possibly from the wrong path. Either solution
would interrupt the steady pipeline flow, called control
hazard, which has been shown to cause a great pipeline
performance loss.

To eliminate the control hazard, the processor must
perform the following jobs by the end of IF stage:
identifying the instruction as a branch, deciding whether the
branch is taken or not, and the target address calculation.
This requirement can be achieved by using the branch target
buffer (BTB). The BTB is a set-associative memory that
caches several types of information, including recently
executed branch addresses, their corresponding target
addresses, and the prediction information. Fig. 1 shows a

Yen-Jen Chang
Department of Computer Science

National Chung-Hsing University, Taichung, 402 Taiwan
Tel : 886-4-22840497 ext.918

e-mail : ychang@cs.nchu.edu.tw

typical instruction fetch integrated with the BTB lookup.
During IF stage, the instruction address, i.e., program
counter (PC) value, is concurrently issued to the instruction
cache and BTB. If a valid BTB entry is found for that
address, then the instruction is a branch. According to the
cached prediction information, if the branch is predicted
taken, the BTB would output the corresponding target
address to be used as the next PC. If the branch is predicted
not taken, the processor continues fetching sequentially after
the branch.

After the processor finishes executing the branch, it
checks to see if the BTB correctly predicted the branch. If it
has, all is well, and the processor can continue sequentially.
If the branch was predicted incorrectly, the processor must
flush the pipeline and begin fetching from the correct branch
path. Then, the branch prediction information and branch
target address (if changed) must be updated.

A. Characteristics of the BTB Lookups
Note that the BTB only caches the information

regarding the recently executed branch instructions. Thus the
BTB lookup is necessary only for the branch instructions. In
the traditional BTB lookup mechanism, because the fetch
engine has no sufficient information to distinguish the
branch instructions, the BTB has to be looked up every
instruction fetch, such that an overwhelming majority of the
BTB lookups are redundant (or unnecessary). As indicated in
[9], the branch instructions account for about 20% of the
total executed instructions. It means that at least 80% of the
BTB lookups are redundant. Fig. 2 shows the proportion of
the non-branch instructions to the total executed instructions
(referred to as redundant rate) measured from the execution
traces of MediaBench benchmarks [7]. From this figure, the
BTB lookup redundant rate is around 83% on average.

Unlike the conventional design where the BTB is
always looked up every instruction fetch, motivated by most
BTB lookups are redundant, we propose an alternative BTB
design, called lazy BTB. The lazy BTB can dynamically
profile sufficient information during program execution, and
then use these profiled data to skip the BTB lookup
conditionally. The goal is to look up the BTB only when the
lookup is necessary. By filtering out most redundant BTB
lookups, our design can effectively reduce the total energy
consumption of the BTB.

B. Related Work
As described previously, we only survey the related

work which target on reducing lookups to save energy

dissipated in BTB. Petrov and Orailoglu [4] proposed
application customizable branch target buffer (ACBTB),
which is a software profiling technique. By utilizing the
precise control-flow information of the application, the
ACBTB is accessed only when a branch instruction is to be
executed. Because the control-flow information must be
extracted during compile/link time, their method is static and
not applicable to the existing executable programs. In
addition, a large hardware modification is necessary.

We can use predecode technique to test if the
instruction is a branch, but the drawback is that the
predecode bits only become available at the end of the
instruction fetch stage. This would result in a significant
performance penalty. In [5], Parikh et al. proposed a small
hardware table, called prediction probe detector (PPD), to
reduce unnecessary predictor and BTB accesses. The PPD
can use compiler hints and predecode bits to recognize when
lookups to the direction-predictor and BTB can be avoided.
The drawback of this approach is that the PPD lookup must
be performed before accessing the predictor and BTB. That
would result in the extra power consumption and possible
performance penalty.

III. Lazy BTB
This section gives the detailed description of the

proposed lazy BTB design. We first discuss the BTB
management, and then develop a dynamic profiling
technique, which is critical to the lazy BTB. In addition, the
necessary hardware augmentations are also provided.

A. BTB Management
The BTB management is concerned with the issue of

entry allocation and replacement. For most microprocessors,
the BTB is a valuable resource with limited size. Thus,
instead of allocating entry for each branch, we only cache
the branches which have the potential for improving
performance. Because caching the untaken branches does not
improve the performance and they are unlikely to be taken in
the future [10], the allocation policy used in our lazy BTB is
that we only allocate a new entry for a branch on its first
taken execution. If no entry is available, then the
replacement is necessary. As indicated in [10], LRU is good
enough. It achieves the similar performance gain to their
proposed MPP algorithm which is an elaborate replacement
policy. Thus, the entry replacement used in the lazy BTB is
the simple LRU.

PC

instruction
cache

Branch Target Buffer

v BT TA PI
v: Valid Bit
BA: Branch Address
TA: Target Address
PI: Prediction Information

branch target address

Fig. 1. A typical instruction fetch integrated with the BTB
lookup.

BTB Lookup Redundant Rate

50%

60%

70%

80%

90%

100%

ad
pcm epi

c
g72

1
gsm jpe

g
mpeg

2

gho
sts

cir
pt

Avera
ge

Encoder
Decoder

Fig. 2. BTB lookup redundant rate measured from MediaBench.

B. Basic Block vs. Taken Trace
Fig. 3 shows a control flow graph (CFG), in which one

node corresponds to one basic block. The basic block, by
definition, is a sequential code that has no branch in except
at the entry and no branch out except at the exit. Therefore,
the branch instruction must be the last instruction of the
basic block. Previous studies have shown that the average
basic block size is usually small, especially for integer codes,
it is around four to six instructions. As shown in Fig. 3, each
basic block has two possible successors (caused by the taken
and untaken path), but the correct path does not be
determined until the codes are executed. Consequently, the
basic block flow only depicts the static control structure of a
program. It cannot reflect the dynamic behavior of a
program.

In contrast to the basic block, we define a taken trace as
the instruction stream between the two consecutive taken
branches. A taken trace illustrates a snapshot of program
execution. It can reflect the dynamic behavior of a program.
A taken trace, by definition, contains more than one basic
block. As shown in Fig. 3, the shaded area is a taken trace
that is composed of basic blocks B1, B3, B4 and B7. It means
that the last instructions of B1, B3 and B4 are all untaken
branches during program execution. Instead of one BTB
lookup per basic block, the goal of our design is to achieve
one BTB lookup per taken trace.

C. Hardware Augmentations
The lazy BTB design relies on the profiled taken trace

from previous runs to skip the BTB lookup. A key issue in
the realization of our design is how to profile the taken trace
during program execution. Unlike the ACBTB technique
presented in [4], which is based on the compiler profiling,
our method is a hardware implementation without any
software supports, including compiler. Before describing our
design in detail, we first provide the necessary hardware
augmentation.

(1) The conventional BTB has to be augmented with an
extra field for each entry, called taken trace size (TTS) field,
which is used to record the size of the following taken trace.
The width of the TTS field must be large enough to
accommodate most taken traces. Of course, the appropriate
TTS field width depends on the dynamic behavior of the
applications. Fig. 4 shows the average distribution of the
TTS for MediaBench benchmark. For the best tradeoff
between the energy reduction efficiency and hardware cost,
the TTS field width is determined to be fixed 6-bit
throughout this paper.

(2) Our design only performs the BTB lookup while the
instruction is likely to be a taken branch. We need a counter,
called remainder trace length (RTL), to indicate whether the
currently fetched instruction locates within a taken trace or
not. The initial RTL value is 0. When a BTB hit occurs, the
RTL counter is set to the TTS value which is retrieved from
the hit entry. Before looking up the BTB, if the RTL value is
not equal to zero, then the currently fetched instruction is
within a taken trace and is not a taken branch. Therefore, the
BTB lookup can be skipped for energy saving. If the
instruction is actually not a taken branch, then the RTL value
is decreased by 1. In the other case, the RTL value is equal
to zero, which implies that the currently fetched instruction
is likely to be a taken branch. The BTB lookup is necessary
for branch prediction and target address retrieval.

(3) An additional counter, called trace size accumulator
(TSA), is needed to accumulate the taken trace size during
program execution. The initial TSA value is 0 and increased
by 1 every non-branch instruction execution. Until a taken
branch is encountered, the TSA value is restored to the TTS
field of the previous taken branch indexed by TE value
(described below), and then it is reset to 0 to be accumulated
until the next taken branch.

(4) Finally, in order to restore the TSA value to the
corresponding taken branch, a temporal register, called
target entry (TE), is needed to remember the index of the
previous hit/allocated BTB entry during program execution.
The initial TE value is 0. There are two cases where the TE
value would be set. First, when we allocate a BTB entry for a
new coming taken branch, the TE value has to be set to the
allocated entry number. Second, if a BTB hit occurs and its
prediction is correct, then the TE value has to be set to the hit
entry number.

The hardware augmentations include an extra 6-bit field
in BTB, three additional counters, and the necessary control
circuitry. Except for the first one, the energy overheads
caused by the remainder two are negligible to the energy
consumption per BTB lookup.

D. Dynamic Taken Trace Profiling
Unlike the cache whose output must be accurate for

correct program execution, the output of BTB is allowed to
be inaccurate. The system can recover and continue by
flushing any instructions fetched from the incorrect path
before their results have been committed. This is the most
important feature that guarantees our design can work well.
Fig. 5 illustrates the dynamic taken trace profiling developed
for the lazy BTB, which covers from the IF to EX stage. The

B1

B2 B3

B4 B5

B7B6

Fig. 3. An example of control flow graph (CFG). The shaded
area is a taken trace.

Taken Trace Size Distribution

0%

10%

20%

30%

40%

50%

=<3 4~7 8~15 16~31 32~63 >=64

taken trace size

Fig. 4. Taken trace size (TTS) distribution measured from
MediaBench.

BTB lookup is performed (or skipped) during IF stage, and
the actual branch result, i.e., the path and target address,
would be determined in ID stage. If the prediction is correct,
the execution continues with no stall. Otherwise, the
recovery procedure for misprediction would be executed in
the EX stage, which costs the performance penalty. From
this figure, we can break the entire dynamic profiling scheme
into seven possible paths. Their characteristics, including
penalty cycles incurred by misprediction, are summarized in
Table 1, and the detailed descriptions are provided as follow.

Path 1: In this path, because the instruction is found in
the BTB and predicted taken, we can retrieve the
corresponding TTS from the hit entry and set RTL to it
during the IF stage. Next, in the ID stage, the branch is
resolved and actually not taken. It is a misprediction case.
The RTL value has to be reset to 0, and the TSA continues to
accumulate the taken trace size. Note that the ID stage would
be overlapped with the IF stage in the pipeline. In order to

avoid hardware conflict the RTL value changes only in the
second phase of IF stage, and the first phase of ID stage. In
the EX stage, due to the misprediction, we have to kill the
fetched instruction, delete the BTB entry, and restart to fetch
the instruction from the correct path. The penalty cycles are
2 for this path.

Path 2: Unlike the path 1 which is a misprediction, the
BTB prediction is correct in this path. As shown in Fig. 5,
the RTL is set to the retrieved TTS value during the IF stage.
Next, in the ID stage, the TSA value has to be restored to the
previous taken branch entry indexed by TE, and then be reset
to 0 to accumulate the following taken trace size. Finally, the
TE value is set to the index of the hit entry in the EX stage.
Due to the correct prediction, the penalty cycle is 0.

Path 3: This path is the execution flow of the non-
branch instructions. Thus, we only increase the TSA value
by 1 to accumulate the taken trace size during the ID stage.
Of course, the penalty cycle is 0.

Path 4: Due to the BTB miss, the instruction is
predicted as non-branch (or not taken), but it is resolved as a
taken branch in the ID stage. Consequently, the TSA value
has to be restored to the previous taken branch entry indexed
by TE, and then be reset to 0 to accumulate the next taken
trace size. Next, in the EX stage, we allocate a BTB entry for
this taken branch. After storing the branch address and its
target addresses, the TE value is set to the index of the
allocated entry. Finally, we have to kill the fetched

send PC to
BTB RTL=0?

TSA++
RTL<=0

N
Hit?

Taken
branch?

Y

BTB[TE].TTS<=TSA
TSA<=0

N

Y

Y

TSA++

Taken
branch?

BTB[TE].TTS<=TSA
TSA<=0

N

Y

RTL<=BTB[index].TTS

send out the
predicted PC

TE=index

correct
prediction

(1) delete entry
(2) kill the fetched instr.
(3) restart to fetch another
instr.

misprediction

(1) store branch & target
addresses into BTB[index]
(2) TE=index
(3) kill the fetched instr.
and restart to fetch another
instr.

normal
instruction
execution

Taken
branch?

BTB[TE].TTS<=TSA
TSA<=0

N

Y

N

RTL--
TSA++

normal
instruction
execution

Hit in BTB?

Y

N

(1) RTL<=BTB[index].TTS
(2) TE=index

(1) store branch & target
addresses into BTB[index]
(2) TE=index & RTL=0
(3) kill the fetched instr.
and restart to fetch another
instr.

Path 2

Path 1

Path 3

Path 4

Path 5

Path 6

Path 7

IF

ID

EX

Fig. 5. The dynamic taken trace profiling technique developed for the lazy BTB design.

Table 1. The seven possible paths in the lazy BTB scheme.

Possible
Paths

BTB
Lookup Hit/Miss Prediction Actual

Branch
BTB Looup

in EX
Penalty
Cycles

Path 1 Y Hit taken not taken - 2
Path 2 Y Hit taken taken - 0
Path 3 Y Miss - not taken - 0
Path 4 Y Miss - taken - 2
Path 5 - - - not taken - 0
Path 6 - - - taken Y/Hit 3/4
Path 7 - - - taken Y/Miss 1/2

instruction, and restart to fetch the instruction from the
correct path. The penalty cycles are 2.

Path 5: Similar to the path 3, this path is also the
execution flow of the non-branch instructions. The only
difference between the paths 3 and 5 is that the BTB lookup
can be skipped in this path due to RTL<>0. Note that,
besides increasing the TSA value by 1, the RTL has to be
decreased by 1 in the ID stage. The penalty cycle is also 0.

Path 6: Due to RTL<>0 the BTB lookup can be skipped
in the IF stage, and then the instruction is resolved as a taken
branch in the ID stage. Thus, we first restore the TSA value
to the previous taken branch entry indexed by TE, and then
reset TSA to 0 to accumulate the next taken trace size. Next,
in the EX stage, before allocating a BTB entry for this taken
branch, in order to avoid duplicated allocation we have to
check whether it is already in the BTB or not. In the path 6,
because this taken branch is not found in the BTB, we have
to allocate a BTB entry for this taken branch as the steps in
the path 4. Note that the RTL has to be reset to 0. Because a
BTB lookup is unavoidable in the EX stage, in the worst
case it may be overlapped with the BTB lookup in the IF
stage. Thus, the penalty cycles are 3 for the normal case, and
4 for the worst case.

Path 7: This path is almost the same as the path 6. The
only difference is that the taken branch is already in the
BTB. Thus, instead of allocating a BTB entry for this taken
branch, we can retrieve the corresponding TTS from the
existing entry and set RTL to it in the EX stage. The penalty
cycles are 1 for the normal case, and 2 for the worst case.

We summarize the important features of the new BTB
design. (1) In paths 1~4, due to RTL=0 the lookup is
necessary as the conventional BTB design. In contrast,
because RTL<>0, the BTB lookup can be skipped in paths
5~7, as shown in shaded columns in Table 1. (2) Compared
to the conventional BTB, a significant energy savings come
from the path 5 in our design. This is because we have
enough information profiled during program execution to
skip the BTB lookup conditionally. (3) The lazy BTB
achieves one BTB lookup per taken trace. It is more energy
efficient than the ACBTB [6], which realizes one BTB
lookup per basic block.

IV. Experimental Results
For the results presented in this study, we use

SimpleScalar [6] toolset to model a baseline processor that
closely resembles StrongARM processor [11]. It is a single-
issue, in-order, pipelined machine with five stages. The
major processor and penalty parameters are listed in Table 2.
We use the execution-driven simulation to investigate the
potential energy efficiency of the lazy BTB design, and its
impact on performance.

A. Benchmarks
Because our baseline processor model is usually used in

the embedded systems for multimedia or mobile
applications, the input benchmark is MediaBench [7]. Unlike
another popular benchmark, SPEC2000, which is a suit of
general-purpose programs, the MediaBench is a suite of
applications focus on multimedia and communications
systems. Each benchmark of MediaBench has two separate
programs: encoding and decoding.

B. Results and Discussions
Path Distributions: From Fig. 5, we know that the path

distributions have a strong impact on the energy efficiency
of the lazy BTB. Table 3 shows the path distributions for
each benchmark. In this table, we divide the seven paths into
three groups which are path 1~4, path 5 and path 6~7.
Except for adpcm_en, adpcm_de and mpeg2_en, the
percentage of path 5 is over 80% for all benchmark. This is
because the BTB miss rates of adpcm_en, adpcm_de and
mpeg2_en are higher than that of the other benchmarks.
Because in our design the major energy savings come from
the path 5, the large percentage of path 5 is preferred. In
contrast, the BTB lookup is necessary in both path 1~4 and
path 6~7, so their small percentages are favorable.
Particularly, besides the energy consumption, path 6~7
further has a negative impact on the performance. This
would be discussed below.

Total Energy Consumption of BTB Lookups: Because
the organization of a BTB is essentially identical to that of a
cache, we can use the CACTI tool [8], which is a widely
accepted cache timing and power model, to estimate the
BTB energy consumption. As listed in Table 2, the BTB
organization is 512-entry 4-way. By using CACTI
configured with 0.18µm technology, we obtained the energy

Table 2. Major processor and penalty parameters used in our
processor model.

Issue width 1 intr. per cycle
Intruction window 2-RUU, 2-LSQ

1 Int ALU, 1 Int Mult/Div
1 FP ALU, 1 FP Mult/Div

L1 instruction cache 16KB, 32-way, 32B blocks
L1 data cache 16KB, 32-way, 32B blocks
TLB (iTLB & dTLB) 128-entry, 4-way
Branch perdictor 2-Level 1K-entry
BTB 512-entry, 4-way
Return address stack 8-entry

L1 hit latency 1 cycle
Branch misprediction 2 cycles

8 cycles for the first chunk
2 cycles for the rest of a burst access

TLB miss penalty 30 cycles

Processor Configuration

Function units

Memory access latency

Penalty Parameters

Table 3. Path distributions for each benchmark.

Benchmark path 1~4 path 5 path 6~7
adpcm_en 37.53% 59.41% 3.06%
adpcm_de 32.83% 64.63% 2.54%

epic_en 13.89% 85.68% 0.43%
epic_de 15.95% 83.39% 0.66%
g721_en 18.00% 81.11% 0.89%
g721_de 17.72% 81.42% 0.86%
gsm_en 15.00% 84.45% 0.56%
gsm_de 11.35% 88.50% 0.15%
jpeg_en 14.57% 84.92% 0.51%
jpeg_de 14.44% 85.07% 0.49%

mpeg2_en 30.79% 66.90% 2.31%
mpeg2_de 17.37% 81.81% 0.82%
ghostscirpt 13.17% 86.48% 0.35%

Average 19.43% 79.52% 1.05%

consumption per lookup is about 0.484 nJ and 0.492 nJ for
the conventional and lazy BTBs, respectively. Because in
our design the BTB is augmented with an extra TTS (6-bit)
field for each entry, the energy consumption per BTB lookup
is slightly larger than that of the conventional BTB.

The metric used to evaluate the energy efficiency is the
simple total energy consumption of BTB lookups. Table 4
shows the total energy consumption number in mJ for both
the conventional and lazy BTB designs. Compared to the
conventional BTB, one can immediately notice that the
energy reduction would be an order of magnitudes. By
filtering out most redundant BTB lookups, the lazy BTB can
reduce the total energy consumption of BTB lookups by
56%~88% for MediaBench.

Performance Impact: The unit of performance
measurement we use is instructions per cycle (IPC),
calculated as the total number of execution instructions
divided by execution cycles. Given that both the number of
execution instructions and processor cycle time are constant,
IPC is a direct measure of performance. Compared to the
conventional BTB, from Fig. 5 we can see that only the
paths 6 and 7 result in the extra penalty cycles. In this case,
the BTB lookup is skipped, but the instruction is a taken
branch actually. Thus, one BTB lookup has to be paid during
the EX stage, that would decrease the overall performance.
The paths 6 and 7 are, therefore, referred to as unfavorable
path.

From previous discussion, we conclude that the
negative impact of our design on the performance depends
on the occurrence of unfavorable path. If most instructions
follow the unfavorable path, then the lazy BTB would result
in a significant decrease in IPC. Fortunately, the occurrence
of unfavorable path is small enough. As shown in Table 3,
the percentage of path 6~7 is about 1.05% on average,
Therefore, the lazy BTB has a negligible degradation in
performance. It can be seen from Fig. 6, which shows the
IPC value for the conventional and lazy BTBs. Our design
results in roughly 1.7% IPC degradation on average.

V. Conclusions
In this paper, we have proposed a low power BTB

design, called lazy BTB. By using the developed dynamic

taken trace profiling technique, the lazy BTB can achieve the
goal of one BTB lookup per taken trace instead of one BTB
lookup per basic block. The results show that without
noticeable performance difference from the conventional
BTB, our design can reduce the total energy dissipated in
BTB lookups up to 88% for the MediaBench applications.

References
[1] S. Manne, A. Klauser, and D. Grunwald, “Pipeline Gating:

Speculation Control for Energy Reduction,” in Proc. of
International Symposium on Computer Architecture, 1998, pp.
132-141.

[2] B. Fagin, “Partial Resolution in Branch Target Buffers,” IEEE
Transactions on Computers, Vol. 46, No. 10, 1997, pp. 1142-
1145.

[3] D. H. Albonesi, “Selective Cache Ways: On-Demand Cache
Resource Allocation,” in Proc. of International Symposium on
Microarchitecture, 1999, pp. 248-259.

[4] P. Petrov and A. Orailoglu, “Low-Power Branch Target Buffer
for Application-Specific Embedded Processors,” in Proc. of
Euromicro Symposium on Digital System Design, 2003, pp.
158-165.

[5] D. Parikh, K. Shadron, Y. Zhang, and M. Stan, “Power-Aware
Branch Prediction: Characterization and Design,” IEEE
Transactions on Computers, Vol. 53, No. 2, 2004, pp. 168-186.

[6] D.C. Burger and T. M. Austin, “The SimpleScalar Tool Set,
Version 2.0,” Computer Architecture News, 25 (3), pp. 13-25,
June, 1997. Extended version appears as UW Computer
Sciences Technical Report #1342, June 1997.

[7] C. Lee, M. Potkonjak and W. H. Mangione-Smith,
“MediaBench: A Tool for Evaluating and Synthesizing
Multimedia and Communications Systems,” in Proc. of
International Symposium on Microarchitecture, Dec. 1997, pp.
330-335.

[8] G. Reinman and N. P. Jouppi, “CACTI 2.0: An Integrated
Cache Timing and Power Model,” COMPAQ WRL Research
Report, 2000.

[9] J. L. Hennessy and D. A. Patterson, “Computer Architecture:
A Quantitative Approach,” 3rd Ed., Morgan Kaufmann
Publishers, Inc., 2003.

[10] C. H. Perleberg and A. J. Smith, “Branch Target Buffer Design
and Optimization,” IEEE Transactions on Computers, Vol. 42,
No. 4, 1993, pp. 396-412.

[11] R. Witek and J. Montanaro, “StrongARM: A High-
Performance ARM Processor,” in Proc. of COMPCON, 1996,
pp. 188-191.

IPC for both the conventional and lazy BTBs

0.0

0.2

0.4

0.6

0.8

1.0

adp
cm

_en

adp
cm

_d
e

epi
c_e

n

epi
c_d

e

g72
1_

en

g72
1_

de

gsm
_en

gsm
_d

e

jpe
g_

en

jpe
g_

de

mpeg2_
en

mpeg2_
de

gho
sts

cir
pt

Ave
rag

e

IPCConv
IPCLazy
IPCConv

IPCLazy

Fig. 6. The IPC value for the conventional and lazy BTBs.

Table 4. Total energy consumption (measured in mJ) for both
the conventional and lazy BTB designs.

BTBConv BTBLazy Reduction
adpcm_en 290.8 126.9 56.35%
adpcm_de 239.2 90.7 62.09%

epic_en 25.3 3.7 85.25%
epic_de 3.2 0.6 82.73%
g721_en 131.9 26.1 80.22%
g721_de 128.5 25.0 80.56%
gsm_en 896.6 144.4 83.90%
gsm_de 305.7 35.6 88.35%
jpeg_en 48.6 7.6 84.41%
jpeg_de 12.3 1.9 84.58%

mpeg2_en 544.4 192.8 64.59%
mpeg2_de 82.2 15.6 80.99%
ghostscirpt 557.1 77.3 86.13%

Average 251.2 57.6 77.09%

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

