
Lazy BTB: Reduce BTB Energy Consumption Using Dynamic Profiling 

Abstract- In this paper, we propose an alternative BTB design, 
called lazy BTB, to reduce the BTB energy consumption by 
filtering out the redundant lookups. The most distinct feature of 
the lazy BTB is that it dynamically profiles the taken traces 
during program execution. Unlike the traditional design in 
which the BTB has to be looked up every instruction fetch, by 
introducing an additional field to record the trace information, 
our design can achieve the goal of one BTB lookup per taken 
trace. The experimental results show that with a negligible 
performance degradation the lazy BTB can reduce the BTB 
energy consumption by about 77% on average for the 
MediaBench applications. 

I. Introduction 
It is well known that the control hazards caused by the 

branch instructions are the major bottleneck in developing 
high performance processors. The most common solution to 
the control hazards is to introduce a specific hardware table, 
called branch target buffer (BTB). A BTB is a small 
associative memory that caches recently executed branch 
addresses and their target addresses. The purpose of the BTB 
is to provide early branch identification and its target address 
before the instruction is decoded. Thus, traditionally, the 
BTB has to be always looked up during instruction fetch 
stage. Because the BTB is actually a set-associative cache 
which is usually implemented using arrays of densely packed 
SRAM cells for high performance, the energy consumption 
of the BTB is considerable. For example, the Pentium Pro 
consumes about 5% of the total processor energy in the 
equipped 512-entry BTB [1]. 

The related techniques for BTB energy savings can be 
classified into two categories. One is to reduce the energy 
consumption per BTB lookup  [2] [3], and the other is to 
reduce the number of BTB lookups [4] [5]. Based on the 
observation that reveals most BTB lookups are redundant, in 
this paper we propose an alternative BTB design, called lazy 
BTB, which aims to reduce the number of redundant BTB 
lookups. The key idea behind our design is to look up the 
BTB only when the instruction is likely to be a taken branch. 
We augment the conventional BTB organization with an 
additional field, called taken trace size (TTS) field, to store 
the instruction number between the predicted target and the 
next taken branch, referred to as a taken trace. We have 
developed a dynamic taken trace profiling technique which 
can collect the sufficient taken trace information during 
program execution. According to the profiled data from the 
previous runs, our design can conditionally skip the BTB 
lookup to reduce the energy consumption. 

The distinct features of our design are summarized as 
follows. First, the lazy BTB is a software independent 

technique. Without any compiler instrument, it can 
dynamically profile the taken traces during program 
execution. Second, the lazy BTB can achieve the goal of one 
BTB lookup per taken trace. It is more energy efficient than 
other related work [4][5] that achieve one BTB lookup per 
basic block, because a taken trace contains more than one 
basic block. We use SimpleScalar [6] to perform the 
execution-driven simulation of MediaBench [7], and the 
BTB energy consumption are estimated by using CACTI [8] 
configured with 0.18µm technology. The results show that 
by eliminating a large amount of redundant lookups, our 
design can reduce the total energy consumption of BTB 
lookups by 56%~88% with a 1.7% IPC penalty. 

The rest of this paper is organized as follows. Section 2 
presents our motivation and the characteristics of BTB 
lookups, which reveals most BTB lookups are redundant. In 
Section 3, we describe the proposed lazy BTB in detail, 
including the necessary hardware augmentations. Then, the 
experimental results, including the impact of our design on 
energy reduction and performance, are given in Section 4, 
and Section 5 offers some brief conclusions. 

II. Branch Target Buffer (BTB) 
Pipelining is the key implementation technique to the 

high performance processors. As introduced in [9], for most 
RISC processors the widely used pipeline model is the 
typical five-stage pipeline, which is composed of instruction 
fetch (IF), instruction decode (ID), execution (EX), memory 
access (MEM), and write back (WB) stages. When a taken
branch is executed, the branch target address is normally not 
determined until the end of ID. This implies that the 
pipelined processor needs to know the path of the branch (in 
order to fetch the next instruction) before it has been 
determined. There are two possible solutions to this problem. 
One is waiting for the branch to finish the target address 
calculation and the other is to continue fetching the 
instructions, possibly from the wrong path. Either solution 
would interrupt the steady pipeline flow, called control 
hazard, which has been shown to cause a great pipeline 
performance loss. 

To eliminate the control hazard, the processor must 
perform the following jobs by the end of IF stage: 
identifying the instruction as a branch, deciding whether the 
branch is taken or not, and the target address calculation. 
This requirement can be achieved by using the branch target 
buffer (BTB). The BTB is a set-associative memory that 
caches several types of information, including recently 
executed branch addresses, their corresponding target 
addresses, and the prediction information. Fig. 1 shows a 
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typical instruction fetch integrated with the BTB lookup. 
During IF stage, the instruction address, i.e., program 
counter (PC) value, is concurrently issued to the instruction 
cache and BTB. If a valid BTB entry is found for that 
address, then the instruction is a branch. According to the 
cached prediction information, if the branch is predicted 
taken, the BTB would output the corresponding target 
address to be used as the next PC. If the branch is predicted 
not taken, the processor continues fetching sequentially after 
the branch. 

After the processor finishes executing the branch, it 
checks to see if the BTB correctly predicted the branch. If it 
has, all is well, and the processor can continue sequentially. 
If the branch was predicted incorrectly, the processor must 
flush the pipeline and begin fetching from the correct branch 
path. Then, the branch prediction information and branch 
target address (if changed) must be updated. 

A. Characteristics of the BTB Lookups 
Note that the BTB only caches the information 

regarding the recently executed branch instructions. Thus the 
BTB lookup is necessary only for the branch instructions. In 
the traditional BTB lookup mechanism, because the fetch 
engine has no sufficient information to distinguish the 
branch instructions, the BTB has to be looked up every 
instruction fetch, such that an overwhelming majority of the 
BTB lookups are redundant (or unnecessary). As indicated in 
[9], the branch instructions account for about 20% of the 
total executed instructions. It means that at least 80% of the 
BTB lookups are redundant. Fig. 2 shows the proportion of 
the non-branch instructions to the total executed instructions 
(referred to as redundant rate) measured from the execution 
traces of MediaBench benchmarks [7]. From this figure, the 
BTB lookup redundant rate is around 83% on average. 

Unlike the conventional design where the BTB is 
always looked up every instruction fetch, motivated by most 
BTB lookups are redundant, we propose an alternative BTB 
design, called lazy BTB. The lazy BTB can dynamically 
profile sufficient information during program execution, and 
then use these profiled data to skip the BTB lookup 
conditionally. The goal is to look up the BTB only when the 
lookup is necessary. By filtering out most redundant BTB 
lookups, our design can effectively reduce the total energy 
consumption of the BTB. 

B. Related Work 
As described previously, we only survey the related 

work which target on reducing lookups to save energy 

dissipated in BTB. Petrov and Orailoglu [4] proposed 
application customizable branch target buffer (ACBTB), 
which is a software profiling technique. By utilizing the 
precise control-flow information of the application, the 
ACBTB is accessed only when a branch instruction is to be 
executed. Because the control-flow information must be 
extracted during compile/link time, their method is static and 
not applicable to the existing executable programs. In 
addition, a large hardware modification is necessary. 

We can use predecode technique to test if the 
instruction is a branch, but the drawback is that the 
predecode bits only become available at the end of the 
instruction fetch stage. This would result in a significant 
performance penalty. In [5], Parikh et al. proposed a small 
hardware table, called prediction probe detector (PPD), to 
reduce unnecessary predictor and BTB accesses. The PPD 
can use compiler hints and predecode bits to recognize when 
lookups to the direction-predictor and BTB can be avoided. 
The drawback of this approach is that the PPD lookup must 
be performed before accessing the predictor and BTB. That 
would result in the extra power consumption and possible 
performance penalty. 

III. Lazy BTB 
This section gives the detailed description of the 

proposed lazy BTB design. We first discuss the BTB 
management, and then develop a dynamic profiling 
technique, which is critical to the lazy BTB. In addition, the 
necessary hardware augmentations are also provided. 

A. BTB Management 
The BTB management is concerned with the issue of 

entry allocation and replacement. For most microprocessors, 
the BTB is a valuable resource with limited size. Thus, 
instead of allocating entry for each branch, we only cache 
the branches which have the potential for improving 
performance. Because caching the untaken branches does not 
improve the performance and they are unlikely to be taken in 
the future [10], the allocation policy used in our lazy BTB is 
that we only allocate a new entry for a branch on its first 
taken execution. If no entry is available, then the 
replacement is necessary. As indicated in [10], LRU is good 
enough. It achieves the similar performance gain to their 
proposed MPP algorithm which is an elaborate replacement 
policy. Thus, the entry replacement used in the lazy BTB is 
the simple LRU. 
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Fig. 1. A typical instruction fetch integrated with the BTB
lookup. 
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Fig. 2. BTB lookup redundant rate measured from MediaBench.



B. Basic Block vs. Taken Trace 
Fig. 3 shows a control flow graph (CFG), in which one 

node corresponds to one basic block. The basic block, by 
definition, is a sequential code that has no branch in except 
at the entry and no branch out except at the exit. Therefore, 
the branch instruction must be the last instruction of the 
basic block. Previous studies have shown that the average 
basic block size is usually small, especially for integer codes, 
it is around four to six instructions. As shown in Fig. 3, each 
basic block has two possible successors (caused by the taken
and untaken path), but the correct path does not be 
determined until the codes are executed. Consequently, the 
basic block flow only depicts the static control structure of a 
program. It cannot reflect the dynamic behavior of a 
program. 

In contrast to the basic block, we define a taken trace as 
the instruction stream between the two consecutive taken
branches. A taken trace illustrates a snapshot of program 
execution. It can reflect the dynamic behavior of a program. 
A taken trace, by definition, contains more than one basic 
block. As shown in Fig. 3, the shaded area is a taken trace 
that is composed of basic blocks B1, B3, B4 and B7. It means 
that the last instructions of B1, B3 and B4 are all untaken 
branches during program execution. Instead of one BTB 
lookup per basic block, the goal of our design is to achieve 
one BTB lookup per taken trace.

C. Hardware Augmentations 
The lazy BTB design relies on the profiled taken trace 

from previous runs to skip the BTB lookup. A key issue in 
the realization of our design is how to profile the taken trace 
during program execution. Unlike the ACBTB technique 
presented in [4], which is based on the compiler profiling, 
our method is a hardware implementation without any 
software supports, including compiler. Before describing our 
design in detail, we first provide the necessary hardware 
augmentation. 

(1) The conventional BTB has to be augmented with an 
extra field for each entry, called taken trace size (TTS) field, 
which is used to record the size of the following taken trace. 
The width of the TTS field must be large enough to 
accommodate most taken traces. Of course, the appropriate 
TTS field width depends on the dynamic behavior of the 
applications. Fig. 4 shows the average distribution of the 
TTS for MediaBench benchmark. For the best tradeoff 
between the energy reduction efficiency and hardware cost, 
the TTS field width is determined to be fixed 6-bit 
throughout this paper. 

(2) Our design only performs the BTB lookup while the 
instruction is likely to be a taken branch. We need a counter, 
called remainder trace length (RTL), to indicate whether the 
currently fetched instruction locates within a taken trace or 
not. The initial RTL value is 0. When a BTB hit occurs, the 
RTL counter is set to the TTS value which is retrieved from 
the hit entry. Before looking up the BTB, if the RTL value is 
not equal to zero, then the currently fetched instruction is 
within a taken trace and is not a taken branch. Therefore, the 
BTB lookup can be skipped for energy saving. If the 
instruction is actually not a taken branch, then the RTL value 
is decreased by 1. In the other case, the RTL value is equal 
to zero, which implies that the currently fetched instruction 
is likely to be a taken branch. The BTB lookup is necessary 
for branch prediction and target address retrieval. 

(3) An additional counter, called trace size accumulator
(TSA), is needed to accumulate the taken trace size during 
program execution. The initial TSA value is 0 and increased 
by 1 every non-branch instruction execution. Until a taken 
branch is encountered, the TSA value is restored to the TTS 
field of the previous taken branch indexed by TE value 
(described below), and then it is reset to 0 to be accumulated 
until the next taken branch. 

(4) Finally, in order to restore the TSA value to the 
corresponding taken branch, a temporal register, called 
target entry (TE), is needed to remember the index of the 
previous hit/allocated BTB entry during program execution. 
The initial TE value is 0. There are two cases where the TE 
value would be set. First, when we allocate a BTB entry for a 
new coming taken branch, the TE value has to be set to the 
allocated entry number. Second, if a BTB hit occurs and its 
prediction is correct, then the TE value has to be set to the hit 
entry number. 

The hardware augmentations include an extra 6-bit field 
in BTB, three additional counters, and the necessary control 
circuitry. Except for the first one, the energy overheads 
caused by the remainder two are negligible to the energy 
consumption per BTB lookup. 

D. Dynamic Taken Trace Profiling 
Unlike the cache whose output must be accurate for 

correct program execution, the output of BTB is allowed to 
be inaccurate. The system can recover and continue by 
flushing any instructions fetched from the incorrect path 
before their results have been committed. This is the most 
important feature that guarantees our design can work well. 
Fig. 5 illustrates the dynamic taken trace profiling developed 
for the lazy BTB, which covers from the IF to EX stage. The 
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Fig. 3. An example of control flow graph (CFG). The shaded
area is a taken trace. 
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BTB lookup is performed (or skipped) during IF stage, and 
the actual branch result, i.e., the path and target address, 
would be determined in ID stage. If the prediction is correct, 
the execution continues with no stall. Otherwise, the 
recovery procedure for misprediction would be executed in 
the EX stage, which costs the performance penalty. From 
this figure, we can break the entire dynamic profiling scheme 
into seven possible paths. Their characteristics, including 
penalty cycles incurred by misprediction, are summarized in 
Table 1, and the detailed descriptions are provided as follow. 

Path 1: In this path, because the instruction is found in 
the BTB and predicted taken, we can retrieve the 
corresponding TTS from the hit entry and set RTL to it 
during the IF stage. Next, in the ID stage, the branch is 
resolved and actually not taken. It is a misprediction case. 
The RTL value has to be reset to 0, and the TSA continues to 
accumulate the taken trace size. Note that the ID stage would 
be overlapped with the IF stage in the pipeline. In order to 

avoid hardware conflict the RTL value changes only in the 
second phase of IF stage, and the first phase of ID stage. In 
the EX stage, due to the misprediction, we have to kill the 
fetched instruction, delete the BTB entry, and restart to fetch 
the instruction from the correct path. The penalty cycles are 
2 for this path. 

Path 2: Unlike the path 1 which is a misprediction, the 
BTB prediction is correct in this path. As shown in Fig. 5, 
the RTL is set to the retrieved TTS value during the IF stage. 
Next, in the ID stage, the TSA value has to be restored to the 
previous taken branch entry indexed by TE, and then be reset 
to 0 to accumulate the following taken trace size. Finally, the 
TE value is set to the index of the hit entry in the EX stage. 
Due to the correct prediction, the penalty cycle is 0. 

Path 3: This path is the execution flow of the non-
branch instructions. Thus, we only increase the TSA value 
by 1 to accumulate the taken trace size during the ID stage. 
Of course, the penalty cycle is 0. 

Path 4: Due to the BTB miss, the instruction is 
predicted as non-branch (or not taken), but it is resolved as a 
taken branch in the ID stage. Consequently, the TSA value 
has to be restored to the previous taken branch entry indexed 
by TE, and then be reset to 0 to accumulate the next taken 
trace size. Next, in the EX stage, we allocate a BTB entry for 
this taken branch. After storing the branch address and its 
target addresses, the TE value is set to the index of the 
allocated entry. Finally, we have to kill the fetched 
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Fig. 5. The dynamic taken trace profiling technique developed for the lazy BTB design. 

Table 1. The seven possible paths in the lazy BTB scheme. 

Possible
Paths

BTB
Lookup Hit/Miss Prediction Actual

Branch
BTB Looup

in EX
Penalty
Cycles

Path 1 Y Hit taken not taken - 2
Path 2 Y Hit taken taken - 0
Path 3 Y Miss - not taken - 0
Path 4 Y Miss - taken - 2
Path 5 - - - not taken - 0
Path 6 - - - taken Y/Hit 3/4
Path 7 - - - taken Y/Miss 1/2



instruction, and restart to fetch the instruction from the 
correct path. The penalty cycles are 2. 

Path 5: Similar to the path 3, this path is also the 
execution flow of the non-branch instructions. The only 
difference between the paths 3 and 5 is that the BTB lookup 
can be skipped in this path due to RTL<>0. Note that, 
besides increasing the TSA value by 1, the RTL has to be 
decreased by 1 in the ID stage. The penalty cycle is also 0. 

Path 6: Due to RTL<>0 the BTB lookup can be skipped 
in the IF stage, and then the instruction is resolved as a taken 
branch in the ID stage. Thus, we first restore the TSA value 
to the previous taken branch entry indexed by TE, and then 
reset TSA to 0 to accumulate the next taken trace size. Next, 
in the EX stage, before allocating a BTB entry for this taken 
branch, in order to avoid duplicated allocation we have to 
check whether it is already in the BTB or not. In the path 6, 
because this taken branch is not found in the BTB, we have 
to allocate a BTB entry for this taken branch as the steps in 
the path 4. Note that the RTL has to be reset to 0. Because a 
BTB lookup is unavoidable in the EX stage, in the worst 
case it may be overlapped with the BTB lookup in the IF 
stage. Thus, the penalty cycles are 3 for the normal case, and 
4 for the worst case. 

Path 7: This path is almost the same as the path 6. The 
only difference is that the taken branch is already in the 
BTB. Thus, instead of allocating a BTB entry for this taken 
branch, we can retrieve the corresponding TTS from the 
existing entry and set RTL to it in the EX stage. The penalty 
cycles are 1 for the normal case, and 2 for the worst case. 

We summarize the important features of the new BTB 
design. (1) In paths 1~4, due to RTL=0 the lookup is 
necessary as the conventional BTB design. In contrast, 
because RTL<>0, the BTB lookup can be skipped in paths 
5~7, as shown in shaded columns in Table 1. (2) Compared 
to the conventional BTB, a significant energy savings come 
from the path 5 in our design. This is because we have 
enough information profiled during program execution to 
skip the BTB lookup conditionally. (3) The lazy BTB 
achieves one BTB lookup per taken trace. It is more energy 
efficient than the ACBTB [6], which realizes one BTB 
lookup per basic block. 

IV. Experimental Results 
For the results presented in this study, we use 

SimpleScalar [6] toolset to model a baseline processor that 
closely resembles StrongARM processor [11]. It is a single-
issue, in-order, pipelined machine with five stages. The 
major processor and penalty parameters are listed in Table 2. 
We use the execution-driven simulation to investigate the 
potential energy efficiency of the lazy BTB design, and its 
impact on performance. 

A. Benchmarks 
Because our baseline processor model is usually used in 

the embedded systems for multimedia or mobile 
applications, the input benchmark is MediaBench [7]. Unlike 
another popular benchmark, SPEC2000, which is a suit of 
general-purpose programs, the MediaBench is a suite of 
applications focus on multimedia and communications 
systems. Each benchmark of MediaBench has two separate 
programs: encoding and decoding. 

B. Results and Discussions 
Path Distributions: From Fig. 5, we know that the path 

distributions have a strong impact on the energy efficiency 
of the lazy BTB. Table 3 shows the path distributions for 
each benchmark. In this table, we divide the seven paths into 
three groups which are path 1~4, path 5 and path 6~7. 
Except for adpcm_en, adpcm_de and mpeg2_en, the 
percentage of path 5 is over 80% for all benchmark. This is 
because the BTB miss rates of adpcm_en, adpcm_de and 
mpeg2_en are higher than that of the other benchmarks. 
Because in our design the major energy savings come from 
the path 5, the large percentage of path 5 is preferred. In 
contrast, the BTB lookup is necessary in both path 1~4 and 
path 6~7, so their small percentages are favorable. 
Particularly, besides the energy consumption, path 6~7 
further has a negative impact on the performance. This 
would be discussed below. 

Total Energy Consumption of BTB Lookups: Because 
the organization of a BTB is essentially identical to that of a 
cache, we can use the CACTI tool [8], which is a widely 
accepted cache timing and power model, to estimate the 
BTB energy consumption. As listed in Table 2, the BTB 
organization is 512-entry 4-way. By using CACTI 
configured with 0.18µm technology, we obtained the energy 

Table 2. Major processor and penalty parameters used in our
processor model. 

Issue width 1 intr. per cycle
Intruction window 2-RUU, 2-LSQ

1 Int ALU, 1 Int Mult/Div
1 FP ALU, 1 FP Mult/Div

L1 instruction cache  16KB, 32-way, 32B blocks
L1 data cache 16KB, 32-way, 32B blocks
TLB (iTLB & dTLB) 128-entry, 4-way
Branch perdictor 2-Level 1K-entry
BTB 512-entry, 4-way
Return address stack 8-entry

L1 hit latency 1 cycle
Branch misprediction 2 cycles

8 cycles for the first chunk
2 cycles for the rest of a burst access

TLB miss penalty 30 cycles

Processor Configuration

Function units

Memory access latency

Penalty Parameters

Table 3. Path distributions for each benchmark. 

Benchmark path 1~4 path 5 path 6~7
adpcm_en 37.53% 59.41% 3.06%
adpcm_de 32.83% 64.63% 2.54%

epic_en 13.89% 85.68% 0.43%
epic_de 15.95% 83.39% 0.66%
g721_en 18.00% 81.11% 0.89%
g721_de 17.72% 81.42% 0.86%
gsm_en 15.00% 84.45% 0.56%
gsm_de 11.35% 88.50% 0.15%
jpeg_en 14.57% 84.92% 0.51%
jpeg_de 14.44% 85.07% 0.49%

mpeg2_en 30.79% 66.90% 2.31%
mpeg2_de 17.37% 81.81% 0.82%
ghostscirpt 13.17% 86.48% 0.35%

Average 19.43% 79.52% 1.05%



consumption per lookup is about 0.484 nJ and 0.492 nJ for 
the conventional and lazy BTBs, respectively.  Because in 
our design the BTB is augmented with an extra TTS (6-bit) 
field for each entry, the energy consumption per BTB lookup 
is slightly larger than that of the conventional BTB. 

The metric used to evaluate the energy efficiency is the 
simple total energy consumption of BTB lookups. Table 4 
shows the total energy consumption number in mJ for both 
the conventional and lazy BTB designs. Compared to the 
conventional BTB, one can immediately notice that the 
energy reduction would be an order of magnitudes. By 
filtering out most redundant BTB lookups, the lazy BTB can 
reduce the total energy consumption of BTB lookups by 
56%~88% for MediaBench.

Performance Impact: The unit of performance 
measurement we use is instructions per cycle (IPC), 
calculated as the total number of execution instructions 
divided by execution cycles. Given that both the number of 
execution instructions and processor cycle time are constant, 
IPC is a direct measure of performance. Compared to the 
conventional BTB, from Fig. 5 we can see that only the 
paths 6 and 7 result in the extra penalty cycles. In this case, 
the BTB lookup is skipped, but the instruction is a taken 
branch actually. Thus, one BTB lookup has to be paid during 
the EX stage, that would decrease the overall performance. 
The paths 6 and 7 are, therefore, referred to as unfavorable 
path.

From previous discussion, we conclude that the 
negative impact of our design on the performance depends 
on the occurrence of unfavorable path. If most instructions 
follow the unfavorable path, then the lazy BTB would result 
in a significant decrease in IPC. Fortunately, the occurrence 
of unfavorable path is small enough. As shown in Table 3, 
the percentage of path 6~7 is about 1.05% on average, 
Therefore, the lazy BTB has a negligible degradation in 
performance. It can be seen from Fig. 6, which shows the 
IPC value for the conventional and lazy BTBs. Our design 
results in roughly 1.7% IPC degradation on average. 

V. Conclusions 
In this paper, we have proposed a low power BTB 

design, called lazy BTB. By using the developed dynamic 

taken trace profiling technique, the lazy BTB can achieve the 
goal of one BTB lookup per taken trace instead of one BTB 
lookup per basic block. The results show that without 
noticeable performance difference from the conventional 
BTB, our design can reduce the total energy dissipated in 
BTB lookups up to 88% for the MediaBench applications. 
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Fig. 6. The IPC value for the conventional and lazy BTBs. 

Table 4. Total energy consumption (measured in mJ) for both
the conventional and lazy BTB designs. 

BTBConv BTBLazy Reduction
adpcm_en 290.8 126.9 56.35%
adpcm_de 239.2 90.7 62.09%

epic_en 25.3 3.7 85.25%
epic_de 3.2 0.6 82.73%
g721_en 131.9 26.1 80.22%
g721_de 128.5 25.0 80.56%
gsm_en 896.6 144.4 83.90%
gsm_de 305.7 35.6 88.35%
jpeg_en 48.6 7.6 84.41%
jpeg_de 12.3 1.9 84.58%

mpeg2_en 544.4 192.8 64.59%
mpeg2_de 82.2 15.6 80.99%
ghostscirpt 557.1 77.3 86.13%

Average 251.2 57.6 77.09%
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