
Workload Prediction and Dynamic Voltage Scaling for MPEG Decoding

Ying Tan Parth Malani Qinru Qiu Qing Wu
Department of Electrical and Computer Engineering

State University of New York at Binghamton
Binghamton, NY 13902-6000

E-mail: {ying, parth, qqiu, qwu}@binghamton.edu

Abstract – In this paper we present three efficient DVS
techniques for an MPEG decoder. Their energy reduction is
comparable to that of the optimal solution. A workload
prediction model is also developed based on the block level
statistics of each MPEG frame. Compared with previous works,
the new model exhibits a remarkable improvement in accuracy
of the prediction. The experimental results show that, with the
new prediction model, the presented DVS techniques achieve
more energy reduction than previous works while delivering the
same Quality of Service (QoS).

I. INTRODUCTION

The ever increasing computing power of battery operated
portable devices opens a new era for mobile multimedia
applications. It is important to develop techniques to reduce the
energy dissipation of such applications so that the life time of
the battery can be extended [1]-[5]. One of the representative
examples of multimedia application is MPEG decoding. The
processing time of MPEG decoding varies significantly due to
different frame types and variation between scenes. We call
this processing time as workload. Dynamic Voltage Scaling
(DVS), which allows the processor dynamically alter its speed
and voltage at run time, is one of the most popular energy
reduction techniques for the applications that have large
workload variations [9].

Using DVS will impact the QoS of the MPEG decoder in
several ways. The first to consider is the frame dropping rate.
The decoder displays decoded frames at a constant rate. Each
frame must be decoded before its display deadline. Otherwise,
it will be dropped. The DVS algorithm has the potential to
intensify frame dropping. Another impacting factor is the
buffer size. Buffers are usually used with DVS to even the
workload. Input buffers and output buffers can be inserted
before and after the MPEG decoder. They provide the
opportunity to “borrow” or “steal” processing time among
adjacent frames so that a constant voltage can be used for
decoding [1][4][5]. However, increasing the buffer adds the
hardware cost. Careful trade-off decision should be made.
Finally, the decoding time for each frame is different when
using DVS, however, the frame input and display rate remain
constant. To guarantee a smooth and continuous display, the
decoding and displaying of the first frame need to be delayed,
which we refer as decoding latency. Input buffers are needed to
store the incoming frames before they entering the decoder.
The buffer size is proportional to the length of the latency.

In this paper, we measure the quality of DVS strategy with
its energy reduction, the buffer usage, the frame dropping rate
and the decoding latency. Three DVS schemes for MPEG

decoding are proposed, all of which achieve comparable
energy reduction as the optimal solution.

Global-Grouping is an offline algorithm whose energy
consumption is on average the most close to that of the optimal
solution, i.e. decoding all the frames on the lowest possible and
constant speed, among all three proposed approaches. With
certain decoding latency and some input/output buffers, the
Global-Grouping guarantees a continuous display at a constant
rate without frame dropping, provided that the workload
information of each frame is accurate. Two online heuristic
algorithms, Dynamic-Grouping and GOP-optimal, are also
proposed with different energy reductions and buffer
requirements.

For most DVS techniques to achieve a good performance, it
is important to predict the workload of each task as accurate as
possible. In this paper we develop a linear model to predict the
decoding workload of each frame. To the best of our
knowledge, this is the first prediction model that penetrates
into the layered structure of video stream and utilizes the
information lying at block level instead of frame level or macro
block level. It gives more than 50% reduction in prediction
error compared with some of the best known approaches.

 The rest of this paper is organized as follows. Section II
describes the background of MPEG and related works in this
area. In Section III we discuss our prediction model and its
implementation in detail. Our scheduling methods are given in
Section IV. We represent our experimental results and
discussion in Section V. Finally, the conclusions are given in
Section VI.

II. BACKGROUND AND RELATED WORKS

A. Background of MPEG

MPEG is a video compression standard which represents
the video stream as a series of still images [3]. These images,
also called frames, are displayed sequentially at constant rate
(e.g. 25 fps or frames per second). There are three types of
frames defined in MPEG standard. I-frames or intra-coded
frames are encoded as a whole image i.e. it does not depend on
any other picture. P-frames or predictive coded frames are
encoded using past I or P frame as a reference. Finally there are
B-frames also called as bi-directionally predictive coded
frames which use both past and future I or P frames as
references. The MPEG encoder always sends the encoded
frames in a rearranged order so that the MPEG decoder can
decompress the frames with minimum frame buffering [7]. For

example, a movie with frame order of IBBPBBP will be
rearranged in the output sequence as IPBBPBB.

The MPEG video stream has a hierarchical layered structure.
From top to bottom, it can be divided into sequence, GOP,
frame, slice, macro block and block layers. A video stream is a
sequence of GOPs (Group of Pictures), each one of which
comprises of several frames (ideally 12 to 15). Each frame is
further divided into vertical strips called slices. Each slice
contains several macro blocks which are a 16 by 16 pixel area
of the image. There are six blocks per macro block amongst
which four are luminance (Y) and two are chrominance (Cr
and Cb) blocks.

There are different types of macro blocks similar as frames.
I macro blocks are encoded without using any other macro
block as a reference. P, B and Bi macro blocks are encoded
with forward, backward and bi-directional references
respectively. Further, there can be different types of macro
blocks within a single frame. The I frame contains I macro
blocks only. The P frame contains both I and P macro blocks
and the B frame contains all of the four types of macro blocks.

Three major operations in MPEG decoding, which
consumes most of the processing time, are Run Length
Decoding, Inverse Discrete Cosine Transform (IDCT) and
motion compensation. All of the four types of macro blocks
require Run Length Decoding during their decoding. I macro
blocks also require IDCT. P, B and Bi macro blocks may
require IDCT and in addition also require motion
compensation.

A detailed study of the MPEG coding algorithm shows that
the matching process in motion estimation, which is the
counter part of motion compensation at the encoder side, is
done at block level. For example, in process of decoding a P
macro block there can be a block which does not require IDCT
and decoded only using motion compensation while the other
blocks require both. This is the major motivating factor for our
prediction model.

B. Related Works

Generally, previous works on DVS for MPEG decoding can
be classified into two categories: prediction-based and
non-prediction-based.

For the prediction-based scheduling, the accuracy of
predicted workload plays a significant role in the performance
of these techniques, either for energy saving or for QoS. Most
prediction mechanisms utilize the correlation between the
frame size and the frame decode time [2][8][9]. A linear
relation is usually depicted between these two. The authors of
[9] developed three predictors to predict decoding workload of
each frame. The best one, which will be denoted as
Frame_Type_Len in the rest of the paper, dynamically updates
the average decode time for each frame type and then adds an
offset using a weighted factor based on the slope of frame size
vs. decode time curve. Our experimental results show that, by
carefully analyzing the input video stream, our predictor gives
more accurate results than the Fram_Type_Len predictor.

The prediction accuracy can be improved by considering
other variables lying in a video stream apart from frame size
and types. The authors of [1] divide the frame decoding time
into two parts, frame-dependent (FD) part and
frame-independent (FI) part. The time of the FD is predicted
as the moving average of previous FD. The decoder in this
work is assumed to decode only one frame in each display
interval, which limits its energy saving.

There are also some improved DVS techniques that do not
rely on workload prediction [4][5]. In both of the two works,
buffers are used to avoid deadline missing. Reference [5]
introduces an online DVS technique that fully utilizes the VST
(workload-variation slack time) of each task. However, the
worst case execution time is assumed to be known in advance,
which is not very practical in real world. Another DVS
technique using feedback control [4] to adjust the supply
voltage based on the number of the frames in the output buffer.
However, they assume that a frame is always ready for
decoding. Furthermore, it is difficult to control the gain of the
feedback controller and a slight change in the gain has a great
impact on the entire performance. Despite of the above
mentioned limitations, it is still the best existing technique we
are aware of for both energy reduction and deadline missing
control. In Section V, we will compare our algorithms with
this approach.

III. WORKLOAD PREDICTION

The decode time of each frame varies primarily with the
frame size. However, considering only frame size to estimate
the workload leads to poor prediction accuracy. Another
operation in decoding process which is responsible for
introducing workload variation is IDCT. We experimentally
developed a prediction model based on the number of IDCT
computations required for each frame. This prediction scheme
yields better results but still suffers from poor correlation.

We carefully analyzed the MPEG encoding/decoding
algorithm and realized that different blocks inside the same
macro block may require different decoding operations (i.e.
IDCT and motion compensation). Some of them may need
only motion compensation while others need both. It is
because the matching process in motion estimation at the
encoder side is done at block level and some blocks have a
zero remaining energy after motion estimation (not requiring a
DCT operation) while others have a non-zero remaining
energy.

TABLE 1 RELATION BETWEEN THE MACRO BLOCKS AND THE BLOCKS

I P B Bi

IDCT only M1 X X X X
IDCT + FW Motion M2 X

FW Motion only M3 X
IDCT + BW Motion M4 X

BW Motion only M5 X
IDCT + Bi Motion M6 X

Bi Motion only M7 X
No IDCT No Motion M8 X X X

Macro Block Block Type

% Absolute Error

0

20

40

60

80

100

bobo
flo

wer

hak
inne

n red

al_
sm

as
h

ca
nyo

n

hubb
le

air
wolf2 sk

i

Blaz
er

Ave
rag

e

frame_avg
frame_type_len
Our Approach

The processing times for forward, backward and
bi-directional motion compensation are different. For example,
the bi-directional motion compensation takes the longest time
because it needs to consider two references. Finally, in P, B
and Bi macro blocks, there are a large number of skipped
blocks which are copied directly from the reference block. No
IDCT or motion compensation is needed for these blocks. The
processing time for these skipped blocks is simply the time for
memory read and write. Based on the above observations we
divide the MPEG blocks into 8 different types given in the
first column of TABLE 1. Different types of blocks require
different processing during the decoding. Not all of the 8 types
of blocks can co-exist in a macro block. The relation between
the macro blocks and different types of blocks are summarized
in TABLE 1. The variable Mi, 1 ≤ i ≤ 8, is used to represent the
number of type i blocks in a frame. The method to extract
these values will be discussed later.

Our analysis shows that a considerable variation still exists
for the decoding time of the I frames, although they have the
same number of type 1 blocks. It means that the processing of
the Run Length Decoder is not negligible. Further study shows
that the processing time of the Run Length Decoder is
proportional to the size of the data. Therefore, another variable,
M9, is introduced to account for the size of the frame.

Equation (1) shows our prediction model based on these
nine variables. The coefficients w0, w1, …, w9 are obtained
using linear regression analysis.

≤≤
⋅+=

910__
i ii Mwwtimedecodeframe (1)

 For the same MPEG decoder, the processing time of Run
Length Decoding, IDCT and motion compensation on a single
block is the same for different types of movies. With the above
formulation of the frame decoding time, we can derive one set
of regression coefficients that works for all types of movies.
Hence, only one predictor is needed for each decoder. Most
regression analysis based prediction model need to have
several sets of regression coefficients for different types of
movies.

We applied our prediction model to a variety of movies
including animated movies, high motion and low motion
scenes from actual movies. The length of these movie clips
ranges from 150 frames up to 3000 frames. The target decoder
is the Berkeley MPEG decoder [7] running on Pentium IV
2.6GHz processor. We simulated and compared our prediction
results with that of two other predictors given by reference [1],
which to the best of our knowledge are the most efficient
amongst all contemporary approaches. The Frame_Avg
approach predicts the decoding time as the moving average of
previous decoding time for each type. The Frame_Type_Len
approach improves the Frame_Avg approach by adding an
offset to account for the frame size. The Frame_Type_Len
approach is also trained with the same set of movies to obtain
a fair comparison.

Fig. 1 depicts the comparison of the Prediction Errors (PE)
of three predictors.

Fig. 1. Comparison of prediction errors

The PE is calculated as
a

ap

T

TT

n
PE

−
= 1 , where Tp and Ta

are predicted and actual decoding time respectively. As can be
seen from the figure our predictor has an average of 66%
improvement in the prediction error compared to both
approaches.

In addition to the lower prediction error, the new predictor
gives better correlation with the actual value. Fig. 2 gives the
scatter plot of the predicted workload vs. actual workload for
those three approaches. Fig. 3 gives the comparison of the
correlation coefficients.

(a) Frame_Avg (b) Frame_Type_Len

(c) Our approach

Fig. 2. Predicted workload vs. actual workload

Correlation Coefficient (R2)

0

0.4

0.8

1.2

1.6

bo
bo

flo
wer

ha
kin

ne
n

re
d

al_
sm

as
h

ca
ny

on

hu
bb

le

air
wolf

2
sk

i

Blaz
er

Ave
ra

ge

frame_avg
frame_type_len
our approach

Fig. 3. Comparison of correlation coefficients

2 4 6 8 10 12 14

x 10
-4

2

4

6

8

10

12

14

16
x 10

-4

Predicted decode time by our model (sec)

A
ct

ua
l D

ec
od

e
T

im
e

(s
e

c)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

x 10
-3

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

-3

Predicted decode time by frame avg approach (sec)

A
ct

ua
l d

ec
o

de
 t

im
e

(s
ec

)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

x 10
-3

4

5

6

7

8

9

10

11

12

13

14
x 10

-4

Predicted decode time by frame type len approach (sec)

A
ct

ua
l d

ec
o

de
 t

im
e

(s
ec

)

Fig. 4. Format of macro block header

At the last of this section, we go back to the layered structure
of MPEG video stream and explain how to extract the
variables M1~M8. There is a fix sized header at each hierarchy
level of a MPEG stream, which contains important
information needed for decoding. The information used by our
model resides in the macro block header which contains a start
code and 6 bits of information. The value of these bits is used
as an index for a look up table stored in the decoder and each 9
bits entry in this table contains four fields as illustrated in
Fig.4. The flag mb_intra indicates whether the given macro
block is intra coded or not. The CBP (coded block pattern) is a
six bit code that indicates whether the IDCT operation is
needed for each block. The Motion FW and Motion BW flags
indicate the existence of forward and backward motion
compensations. By combining these parameters we can easily
count the number of each categorized block for our model.

IV. DYNAMIC VOLTAGE SCALING

In this section, we introduce three DVS methods for MPEG
decoding. For these approaches, continuous frequency/voltage
scaling capabilities are assumed. Also, since the time needed
to switch between different voltage settings is less than 1% of
the time needed for decoding each frame [1], and some newer
processors may even lower this percentage, we assume that the
switch time is negligible. It is also assumed that the input and
display of the MPEG decoder are at a constant rate whose
period is T.

Given a MPEG stream with n frames, the optimal constant
decoding voltage Vopt can be calculated as:

max

1

load

V

i
load

V full
n
i i

opt ⋅= = ,

where loadi is the workload of the ith frame, loadmax is the
largest workload and Vfull is the level of supply voltage which
finishes processing the loadmax within T . Using the Vopt the
video stream can be decoded within n*T time and the energy
dissipation is minimal. We call this approach as optimal-VS.

There are several limitations with the optimal-VS. 1) It
requires that the workload of each frame is known in advance
2) It decodes the frame at a constant speed without considering
the frame incoming time or output deadline. As a result a large
input/output buffer is needed; otherwise, there will be a QoS
penalty. The following three DVS algorithms are developed to
resolve these two problems.

A. GOP-optimal DVS

The GOP-optimal algorithm buffers all the frames in a GOP,
estimates their workload, and decodes the entire GOP using a
constant voltage that is calculated similar as Vopt. This is an
on-line heuristic that is based on Optimal-VS. It does not need
the workload information of the entire video stream before
decoding. However, it does not consider the frame incoming
time and display deadline either. The first frame in a GOP is
always an I frame, which usually has larger workload than
other frames in the GOP and needs longer decoding time.

To guarantee that there is always a frame ready to be
displayed, the simplest way is to start displaying the first
frame after the entire GOP has been decoded. As a result, the
output buffer of the decoder should be large enough to hold all
of the frames in a GOP. Furthermore, the input frames come in
at a constant rate. Because the first frame in a GOP takes the
longest decoding time, extra buffers are needed to store the
incoming frames. In the worst case, the input buffer needs to
be two GOP long. Note that these are only conservative
estimations of the buffer size. The actual buffer usage could be
less.

B. Global-Grouping

Let the display time of the ith frame denoted as Di. The time
to decode a n frame MPEG stream can be divided into n
intervals (0, D1), (D1, D2), …, (Dn-1, Dn). The Global-Grouping
gathers consecutive intervals into groups. It divides the
decoding time into m groups G1, G2, …, Gm. Inside the jth
group, a constant voltage Vj is used. Vj is selected such that all
frames whose display time is within Gj can be decoded before
its display deadline. Note that the Global-Grouping is
applicable to the general applications with deadlines.

During the grouping procedure, the average workload in the
time zones (D0, D1), (D0, D2), … , (D0, Dn) will be tested and
the intervals in the time zone that has the maximum average
workload will be grouped together. After that a new search
will start on the rest of the intervals. The pseudo code of the
Global-Grouping algorithm is given in Fig. 5, where Ci is the
decoding workload of frame i, which should be displayed at
time Di.

As mentioned in section II, a B frame has two reference
frames. Both of them are received before the B frame and they
also should be decoded before the B frame.

Fig. 5. Global-Grouping algorithm

Start code Information
field

mb_intra CBP Motion
FW

Motion
BW

1 2 7 8 9…

1. Set size as the total number of frames;
2. index = 0, j = 0;
3. while index < size
4. for k = index+1 to k = size
5. find out the value of k, which makes

k

ii index

k i

C

D D
=

−
maximum;

6. make workload from index+1 to k group Gj;
7. end
8. index = k, j++, return to step 3;

Display
deadline

10 32 54 76 98

Decoding end
1 32 54 76 98

4 65 87 109 1211
Input arrival

Decoding latency
(input buffering)

Displaying lag
(output buffering)

0

3

TABLE 2 WORKLOAD REARRANGEMENT

index 1 2 3 4 5 6 7 8

receive order I1 P2 B3 B4 P5 B6 B7 I8

display order I1 B3 B4 P2 B6 B7 P5 I8

Workload (Ci) I1 P2+B3 B4 0 P5+B6 B7 0 I8

While the forward reference frame is displayed before the B
frame, the backward reference frame is display after the B
frame. Therefore, care should be used when calculating the
workload Ci. TABLE 2 shows the relationship of receiving
order, display order and rearranged decoding workload in each
display interval. Note that the Global-Grouping enables the
decoder to borrow the time from the previous interval;
therefore the time to decode Ci could be larger than one T.

The result of Global-Grouping has some interesting
characteristics as Theorem 1 and 2 states. The proof is
straightforward and will be skipped due to the space
limitation.

Theorem 1: For each group Gj, we can always find a
constant voltage Vj, under which the decoding of each frame
can be finished before its display deadline and the idle time of
the processor is 0. Vj is monotonically decreasing as j
increases and it is proportional to the average workload in this

group:
−−

=
i ii

i i
avg DD

C
C

)(1
, where (Di-1, Di)∈Gj.

Theorem 2: The last frame of a group has the largest
workload amongst the frames within this group. Its decoding
is finished right at its display deadline. Other frames are
decoded before their display deadline provided that the
workload information is accurate.

Input and output buffers are needed for the Global-Grouping
to guarantee that there is always a frame available for
decoding or displaying. An example is illustrated in

Fig. 6. In order for each frame to be ready before their
decoding starts, the receiving procedure must start 3T earlier
than the decoding procedure. A buffer at the input side must be
used to store the incoming frames during this 3T delay period.
Therefore, the size of the buffer is 3 frames. Furthermore,
since there is a displaying lag, output buffers are needed to
store those that finish decoding before their display deadline.
In the example, a buffer of 2 frames is needed. It is obvious
that the input buffer size (IB) and the output buffer size (OB)
always have the following relation 1±= OBIB .

Fig. 6. Input and output buffering

The IB can be calculated as the following equation

))](([maxmax __
,

=−= i
Gofstartk

javg

k
ij

j C
C

flooriIB , (2)

where Cavg,j is the average workload of group Gj. The
experiments show that, although the Global-Grouping needs
fewer buffers than the Optimal-VS, the amount is still quite
considerable.

The Global-Grouping is an offline strategy and it needs the
workload profile of the entire video stream. Compared with
the optimal solution, it requires less buffer while achieves a
comparable energy reduction with less display latency. This
algorithm is useful if the processor decodes and displays
certain movie clips repeatedly. It can also be applied at the
encoder side where the workload profile is available given the
condition that the encoder can communicate with the decoder
about the grouping and voltage selection results.

C. Dynamic-Grouping

The Dynamic-Grouping is an online heuristic based on
Global-Grouping. It buffers the input frames up to a certain
window size (e.g. a GOP size). The workload of each frame
inside the window is predicted and grouping is applied within
this window. When a new frame comes in, the decoder first
predicts its workload loadi then updates the grouping
dynamically as described in

Fig. 7. Here, M is the number of groups in current window
and Cavg, j is the average workload of the jth group.

The size of the input buffer for the Dynamic-Grouping is
equal to the size of the window while the size of the output
buffer can be calculated using equation (2). Compared with
GOP-optimal, Dynamic-Grouping gives better trade-off
between energy and buffer size.

Fig. 7. Dynamic group update

V. EXPERIMENTAL RESULTS AND DISCUSSION

The presented DVS algorithms are tested on several
different movie clips. The statistics of these clips is given in
TABLE 3.

We simulated and compared the proposed DVS algorithms
with three other algorithms. 1) Frame-based, which decodes
one and only one frame in each display interval, 2) Feedback
control based [4] and 3) Optimal-VS.

1. M = index of the last group in the current window;
2. set the incoming frame to be group M+1;
3. for l = M+1 to 1
4. if (Cavg,l > Cavg,l-1)
5. merge group l and l-1
6. set the index of the new group as l – 1
7. else
8. stop
9. end

TABLE 3 CHARACTERISTICS OF MPEG CLIPS

MPEG clips
name index

Frame
type

of
frames

GOP
size

hakkinen 1 I,P,B 799 12
bobo 2 I,P,B 679 90
ski 3 I,P,B 1513 15

blazer 4 I,P,B 2998 12
wg 5 I,P 130 6

The energy values are reported as the percentage
degradation over the optimal-VS approach. The buffer sizes
are the size of display buffer in the unit of frames. Note that
for the Global-Grouping and Optimal-VS, the input buffer size
is the same as that of the output buffer plus or minus 1. For
Dynamic-Grouping and GOP-optimal, input buffers of at most
one GOP and two GOPs long are used, respectively. Some
input buffers are also needed in feedback approach to
guarantee that there is always a frame available to decode
whenever the previous one finishes decoding. For all
algorithms, the decoding latency is proportional to the input
buffer size.

TABLE 4 gives the energy and buffer usage of different
DVS algorithms when the workload prediction is perfect. It
shows that while the Global-Grouping always gives similar
energy reduction as the optimal one, it does not have much
reduction in the buffer requirements. The Dynamic-Grouping
gives the best balance between the energy reduction and the
buffer requirements.

TABLE 5 gives the energy and the buffer usage when the
workload prediction is not perfect. The workload prediction is
given by our prediction model discussed in Section III. The
accuracy of prediction has a great impact on the performance
of DVS techniques, in terms of deadline missing and buffer
usage, however, not so large impact on the energy dissipation.
Since a frame will be dropped if it misses the decoding
deadline, this causes unfair energy comparison. We scaled up
the predicted workload by 5%, which is enough to make sure
that the deadline miss rate is zero. For some cases, this scale
increases the buffer usage however decrease the energy
dissipation. The results show that both Global-Grouping and
Dynamic-Grouping are pretty robust when working with our
workload predictor.

TABLE 4 ENERGY AND BUFFER USAGE OF DVS ALGORITHMS WITH PERFECT
WORKLOAD PREDICTION

MPEG clips 1 2 3 4 5
Energy (%) 200.3 65.1 88.6 118.2 55.8 Frame-based

Buffer 1 1 1 1 1
Energy (%) 3.3 18.1 20.2 13.4 17.7 Feedback

Buffer 9 10 9 10 9
Energy (%) 1.4 4.5 11.8 5.6 10 GOP

optimal Buffer 3 9 3 5 2
Energy (%) 2.2 2.4 10.1 4.1 10 Dynamic

grouping Buffer 3 12 4 2 2
Energy (%) 2.1 2.0 2.1 0.5 9.8 Global

grouping Buffer 8 15 71 56 7
Energy (%) 0 0 0 0 0 Optimal

Buffer 26 26 97 77 9

TABLE 5 ENERGY AND BUFFER USAGE OF DVS ALGORITHMS WITH IMPERFECT
WORKLOAD PREDICTION

Global grouping Dynamic
grouping Clips

Energy
(%)

Buffer
size

Energy
(%)

Buffer
size

1 0.78 32 2.8 3
2 0.99 18 1.4 12
3 2.7 79 11.8 5
4 0.3 66 10.7 7
5 0.4 9 4.6 4

VI. CONCLUSIONS

In conclusion of our work, we present a workload prediction
model, which is motivated by detailed analysis of MPEG
decoding procedure. The predictor utilizes the block level
statistics of each MPEG frame and gives highly accurate
prediction results. Three DVS algorithms are further presented.
All of which gives comparable energy reduction as the optimal
voltage scaling and work robustly with our predictor. The
experimental results show that the Dynamic-Grouping
algorithm gives the best trade-off between energy reduction
and the quality of decoding.

REFERENCES

[1] K. Choi, K. Dantu, W. Cheng and M. Pedram, “Frame-based dynamic
voltage scaling for a MPEG decoder,” ICCAD’02 – A give the CM/IEEE
Int’l Conf. on Computer Aided Design, 2002, pp. 732-737

[2] M. Mesarina and Y. Turner, “Reduced energy decoding of MPEG
streams,” Proc. of Multimedia Computing and Networking, San Jose, CA
2002.

[3] D. Son, C. Yu, and H. Kim, “Dynamic voltage scaling on MPEG
decoding,” International Conference of Parallel and Distributed System
(ICPADS), June 2001.

[4] Z. Lu, J. Lach, M. Stan, and K. Skadron, “Reducing multimedia decode
power using feedback control,” In Proceedings of the 21st International
Conference on Computer Design (ICCD’03), 2003.

[5] C. Im, S. Ha, and H. Kim, “Dynamic voltage scheduling with buffers in
low-power multimedia applications,” ACM Transactions on Embedded
Computing Systems, Vol. 3, pp 686-705, November 2004.

[6] Y. Lu, L. Benini, and G. D. Micheli, “Dynamic frequency scaling with
buffer insertion for mixed workloads,” IEEE Transactions on
computer-aided design of integrated circuits and systems, 21(11), pp.
1284-1305, November 2002.

[7] http://bmrc.berkeley.edu/frame/research/mpeg/mpeg_overview.html
[8] E. Nurvitadhi, B. Lee, C. Yu and M. Kim, “A comparative study of

dynamic voltage scaling for low-power video decoding,” Int’l Conf. on
Embedded Systems and Applications, June 23-26, 2003.

[9] A. Bavier, A. Montz, and L. Peterson, “Predicting MPEG execution
times,” SIGMETRICS / PERFORMANCE ’98, Int’l Conf. On
Measurement and Modeling of Computer Systems, 1998, pp. 131-140.

[10] L. Benini, G. De Micheli, “System-level power optimization: techniques
and tools,” International Symposium on Low Power Electronics and
Design, 1999.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

