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Abstract – In this paper we present three efficient DVS 
techniques for an MPEG decoder. Their energy reduction is 
comparable to that of the optimal solution. A workload 
prediction model is also developed based on the block level 
statistics of each MPEG frame. Compared with previous works, 
the new model exhibits a remarkable improvement in accuracy 
of the prediction. The experimental results show that, with the 
new prediction model, the presented DVS techniques achieve 
more energy reduction than previous works while delivering the 
same Quality of Service (QoS). 

I. INTRODUCTION

The ever increasing computing power of battery operated 
portable devices opens a new era for mobile multimedia 
applications. It is important to develop techniques to reduce the 
energy dissipation of such applications so that the life time of 
the battery can be extended [1]-[5]. One of the representative 
examples of multimedia application is MPEG decoding. The 
processing time of MPEG decoding varies significantly due to 
different frame types and variation between scenes. We call 
this processing time as workload. Dynamic Voltage Scaling 
(DVS), which allows the processor dynamically alter its speed 
and voltage at run time, is one of the most popular energy 
reduction techniques for the applications that have large 
workload variations [9].  

Using DVS will impact the QoS of the MPEG decoder in 
several ways. The first to consider is the frame dropping rate. 
The decoder displays decoded frames at a constant rate. Each 
frame must be decoded before its display deadline. Otherwise, 
it will be dropped. The DVS algorithm has the potential to 
intensify frame dropping. Another impacting factor is the 
buffer size. Buffers are usually used with DVS to even the 
workload. Input buffers and output buffers can be inserted 
before and after the MPEG decoder. They provide the 
opportunity to “borrow” or “steal” processing time among 
adjacent frames so that a constant voltage can be used for 
decoding [1][4][5]. However, increasing the buffer adds the 
hardware cost. Careful trade-off decision should be made. 
Finally, the decoding time for each frame is different when 
using DVS, however, the frame input and display rate remain 
constant. To guarantee a smooth and continuous display, the 
decoding and displaying of the first frame need to be delayed, 
which we refer as decoding latency. Input buffers are needed to 
store the incoming frames before they entering the decoder. 
The buffer size is proportional to the length of the latency. 

In this paper, we measure the quality of DVS strategy with 
its energy reduction, the buffer usage, the frame dropping rate 
and the decoding latency. Three DVS schemes for MPEG 

decoding are proposed, all of which achieve comparable 
energy reduction as the optimal solution. 

Global-Grouping is an offline algorithm whose energy 
consumption is on average the most close to that of the optimal 
solution, i.e. decoding all the frames on the lowest possible and 
constant speed, among all three proposed approaches. With 
certain decoding latency and some input/output buffers, the 
Global-Grouping guarantees a continuous display at a constant 
rate without frame dropping, provided that the workload 
information of each frame is accurate. Two online heuristic 
algorithms, Dynamic-Grouping and GOP-optimal, are also 
proposed with different energy reductions and buffer 
requirements. 

For most DVS techniques to achieve a good performance, it 
is important to predict the workload of each task as accurate as 
possible. In this paper we develop a linear model to predict the 
decoding workload of each frame. To the best of our 
knowledge, this is the first prediction model that penetrates 
into the layered structure of video stream and utilizes the 
information lying at block level instead of frame level or macro 
block level. It gives more than 50% reduction in prediction 
error compared with some of the best known approaches. 

 The rest of this paper is organized as follows. Section II 
describes the background of MPEG and related works in this 
area. In Section III we discuss our prediction model and its 
implementation in detail. Our scheduling methods are given in 
Section IV. We represent our experimental results and 
discussion in Section V. Finally, the conclusions are given in 
Section VI. 

II. BACKGROUND AND RELATED WORKS

A. Background of MPEG 

MPEG is a video compression standard which represents 
the video stream as a series of still images [3]. These images, 
also called frames, are displayed sequentially at constant rate 
(e.g. 25 fps or frames per second). There are three types of 
frames defined in MPEG standard. I-frames or intra-coded
frames are encoded as a whole image i.e. it does not depend on 
any other picture. P-frames or predictive coded frames are 
encoded using past I or P frame as a reference. Finally there are 
B-frames also called as bi-directionally predictive coded
frames which use both past and future I or P frames as 
references. The MPEG encoder always sends the encoded 
frames in a rearranged order so that the MPEG decoder can 
decompress the frames with minimum frame buffering [7]. For 



example, a movie with frame order of IBBPBBP will be 
rearranged in the output sequence as IPBBPBB. 

The MPEG video stream has a hierarchical layered structure. 
From top to bottom, it can be divided into sequence, GOP, 
frame, slice, macro block and block layers. A video stream is a 
sequence of GOPs (Group of Pictures), each one of which 
comprises of several frames (ideally 12 to 15). Each frame is 
further divided into vertical strips called slices. Each slice 
contains several macro blocks which are a 16 by 16 pixel area 
of the image. There are six blocks per macro block amongst 
which four are luminance (Y) and two are chrominance (Cr 
and Cb) blocks.  

There are different types of macro blocks similar as frames. 
I macro blocks are encoded without using any other macro 
block as a reference. P, B and Bi macro blocks are encoded 
with forward, backward and bi-directional references 
respectively. Further, there can be different types of macro 
blocks within a single frame. The I frame contains I macro 
blocks only. The P frame contains both I and P macro blocks 
and the B frame contains all of the four types of macro blocks. 

Three major operations in MPEG decoding, which 
consumes most of the processing time, are Run Length 
Decoding, Inverse Discrete Cosine Transform (IDCT) and 
motion compensation. All of the four types of macro blocks 
require Run Length Decoding during their decoding. I macro 
blocks also require IDCT. P, B and Bi macro blocks may 
require IDCT and in addition also require motion 
compensation.  

A detailed study of the MPEG coding algorithm shows that 
the matching process in motion estimation, which is the 
counter part of motion compensation at the encoder side, is 
done at block level. For example, in process of decoding a P 
macro block there can be a block which does not require IDCT 
and decoded only using motion compensation while the other 
blocks require both. This is the major motivating factor for our 
prediction model.  

B. Related Works 

Generally, previous works on DVS for MPEG decoding can 
be classified into two categories: prediction-based and 
non-prediction-based.  

For the prediction-based scheduling, the accuracy of 
predicted workload plays a significant role in the performance 
of these techniques, either for energy saving or for QoS. Most 
prediction mechanisms utilize the correlation between the 
frame size and the frame decode time [2][8][9]. A linear 
relation is usually depicted between these two. The authors of 
[9] developed three predictors to predict decoding workload of 
each frame. The best one, which will be denoted as 
Frame_Type_Len in the rest of the paper, dynamically updates 
the average decode time for each frame type and then adds an 
offset using a weighted factor based on the slope of frame size 
vs. decode time curve. Our experimental results show that, by 
carefully analyzing the input video stream, our predictor gives 
more accurate results than the Fram_Type_Len predictor. 

The prediction accuracy can be improved by considering 
other variables lying in a video stream apart from frame size 
and types. The authors of [1] divide the frame decoding time 
into two parts, frame-dependent (FD) part and 
frame-independent (FI) part. The time of the FD is predicted 
as the moving average of previous FD. The decoder in this 
work is assumed to decode only one frame in each display 
interval, which limits its energy saving. 

There are also some improved DVS techniques that do not 
rely on workload prediction [4][5]. In both of the two works, 
buffers are used to avoid deadline missing. Reference [5] 
introduces an online DVS technique that fully utilizes the VST 
(workload-variation slack time) of each task. However, the 
worst case execution time is assumed to be known in advance, 
which is not very practical in real world. Another DVS 
technique using feedback control [4] to adjust the supply 
voltage based on the number of the frames in the output buffer. 
However, they assume that a frame is always ready for 
decoding. Furthermore, it is difficult to control the gain of the 
feedback controller and a slight change in the gain has a great 
impact on the entire performance. Despite of the above 
mentioned limitations, it is still the best existing technique we 
are aware of for both energy reduction and deadline missing 
control. In Section V, we will compare our algorithms with 
this approach.  

III. WORKLOAD PREDICTION 

The decode time of each frame varies primarily with the 
frame size. However, considering only frame size to estimate 
the workload leads to poor prediction accuracy. Another 
operation in decoding process which is responsible for 
introducing workload variation is IDCT. We experimentally 
developed a prediction model based on the number of IDCT 
computations required for each frame. This prediction scheme 
yields better results but still suffers from poor correlation.  

We carefully analyzed the MPEG encoding/decoding 
algorithm and realized that different blocks inside the same 
macro block may require different decoding operations (i.e. 
IDCT and motion compensation). Some of them may need 
only motion compensation while others need both. It is 
because the matching process in motion estimation at the 
encoder side is done at block level and some blocks have a 
zero remaining energy after motion estimation (not requiring a 
DCT operation) while others have a non-zero remaining 
energy.  

TABLE 1 RELATION BETWEEN THE MACRO BLOCKS AND THE BLOCKS  

I P B Bi 

IDCT only M1 X X X X 
IDCT + FW Motion M2  X   

FW Motion only M3  X   
IDCT + BW Motion M4   X  

BW Motion only M5   X  
IDCT + Bi Motion M6    X 

Bi Motion only M7    X 
No IDCT No Motion M8  X X X 

Macro Block Block Type
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The processing times for forward, backward and 
bi-directional motion compensation are different. For example, 
the bi-directional motion compensation takes the longest time 
because it needs to consider two references. Finally, in P, B 
and Bi macro blocks, there are a large number of skipped 
blocks which are copied directly from the reference block. No 
IDCT or motion compensation is needed for these blocks. The 
processing time for these skipped blocks is simply the time for 
memory read and write. Based on the above observations we 
divide the MPEG blocks into 8 different types given in the 
first column of TABLE 1. Different types of blocks require 
different processing during the decoding. Not all of the 8 types 
of blocks can co-exist in a macro block. The relation between 
the macro blocks and different types of blocks are summarized 
in TABLE 1. The variable Mi, 1 ≤ i ≤ 8, is used to represent the 
number of type i blocks in a frame. The method to extract 
these values will be discussed later.  

Our analysis shows that a considerable variation still exists 
for the decoding time of the I frames, although they have the 
same number of type 1 blocks. It means that the processing of 
the Run Length Decoder is not negligible. Further study shows 
that the processing time of the Run Length Decoder is 
proportional to the size of the data. Therefore, another variable, 
M9, is introduced to account for the size of the frame. 

Equation (1) shows our prediction model based on these 
nine variables. The coefficients w0, w1, …, w9 are obtained 
using linear regression analysis.  

≤≤
⋅+=
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 For the same MPEG decoder, the processing time of Run 
Length Decoding, IDCT and motion compensation on a single 
block is the same for different types of movies. With the above 
formulation of the frame decoding time, we can derive one set 
of regression coefficients that works for all types of movies. 
Hence, only one predictor is needed for each decoder. Most 
regression analysis based prediction model need to have 
several sets of regression coefficients for different types of 
movies. 

We applied our prediction model to a variety of movies 
including animated movies, high motion and low motion 
scenes from actual movies. The length of these movie clips 
ranges from 150 frames up to 3000 frames. The target decoder 
is the Berkeley MPEG decoder [7] running on Pentium IV 
2.6GHz processor. We simulated and compared our prediction 
results with that of two other predictors given by reference [1], 
which to the best of our knowledge are the most efficient 
amongst all contemporary approaches. The Frame_Avg 
approach predicts the decoding time as the moving average of 
previous decoding time for each type. The Frame_Type_Len 
approach improves the Frame_Avg approach by adding an 
offset to account for the frame size. The Frame_Type_Len 
approach is also trained with the same set of movies to obtain 
a fair comparison.  

Fig. 1 depicts the comparison of the Prediction Errors (PE) 
of three predictors. 

Fig. 1. Comparison of prediction errors

The PE is calculated as
a

ap

T

TT

n
PE

−
= 1 , where Tp and Ta

are predicted and actual decoding time respectively. As can be 
seen from the figure our predictor has an average of 66% 
improvement in the prediction error compared to both 
approaches.  

In addition to the lower prediction error, the new predictor 
gives better correlation with the actual value. Fig. 2 gives the 
scatter plot of the predicted workload vs. actual workload for 
those three approaches. Fig. 3 gives the comparison of the 
correlation coefficients.     

(a) Frame_Avg              (b) Frame_Type_Len 

(c) Our approach  

Fig. 2. Predicted workload vs. actual workload 
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Fig. 3. Comparison of correlation coefficients 
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Fig. 4. Format of macro block header 

At the last of this section, we go back to the layered structure 
of MPEG video stream and explain how to extract the 
variables M1~M8. There is a fix sized header at each hierarchy 
level of a MPEG stream, which contains important 
information needed for decoding. The information used by our 
model resides in the macro block header which contains a start 
code and 6 bits of information. The value of these bits is used 
as an index for a look up table stored in the decoder and each 9 
bits entry in this table contains four fields as illustrated in 
Fig.4. The flag mb_intra indicates whether the given macro 
block is intra coded or not. The CBP (coded block pattern) is a 
six bit code that indicates whether the IDCT operation is 
needed for each block. The Motion FW and Motion BW flags 
indicate the existence of forward and backward motion 
compensations. By combining these parameters we can easily 
count the number of each categorized block for our model. 

IV. DYNAMIC VOLTAGE SCALING

In this section, we introduce three DVS methods for MPEG 
decoding. For these approaches, continuous frequency/voltage 
scaling capabilities are assumed. Also, since the time needed 
to switch between different voltage settings is less than 1% of 
the time needed for decoding each frame [1], and some newer 
processors may even lower this percentage, we assume that the 
switch time is negligible. It is also assumed that the input and 
display of the MPEG decoder are at a constant rate whose 
period is T.

Given a MPEG stream with n frames, the optimal constant 
decoding voltage Vopt can be calculated as: 

max

1

load

V

i
load

V full
n
i i

opt ⋅= = ,

where loadi is the workload of the ith frame, loadmax is the 
largest workload and Vfull is the level of supply voltage which 
finishes processing the loadmax within T . Using the Vopt the 
video stream can be decoded within n*T time and the energy 
dissipation is minimal. We call this approach as optimal-VS. 

There are several limitations with the optimal-VS. 1) It 
requires that the workload of each frame is known in advance 
2) It decodes the frame at a constant speed without considering 
the frame incoming time or output deadline. As a result a large 
input/output buffer is needed; otherwise, there will be a QoS 
penalty. The following three DVS algorithms are developed to 
resolve these two problems. 

A. GOP-optimal DVS 

The GOP-optimal algorithm buffers all the frames in a GOP, 
estimates their workload, and decodes the entire GOP using a 
constant voltage that is calculated similar as Vopt. This is an 
on-line heuristic that is based on Optimal-VS. It does not need 
the workload information of the entire video stream before 
decoding. However, it does not consider the frame incoming 
time and display deadline either. The first frame in a GOP is 
always an I frame, which usually has larger workload than 
other frames in the GOP and needs longer decoding time. 

To guarantee that there is always a frame ready to be 
displayed, the simplest way is to start displaying the first 
frame after the entire GOP has been decoded. As a result, the 
output buffer of the decoder should be large enough to hold all 
of the frames in a GOP. Furthermore, the input frames come in 
at a constant rate. Because the first frame in a GOP takes the 
longest decoding time, extra buffers are needed to store the 
incoming frames. In the worst case, the input buffer needs to 
be two GOP long. Note that these are only conservative 
estimations of the buffer size. The actual buffer usage could be 
less. 

B. Global-Grouping 

Let the display time of the ith frame denoted as Di. The time 
to decode a n frame MPEG stream can be divided into n
intervals (0, D1), (D1, D2), …, (Dn-1, Dn). The Global-Grouping 
gathers consecutive intervals into groups. It divides the 
decoding time into m groups G1, G2, …, Gm. Inside the jth 
group, a constant voltage Vj is used. Vj is selected such that all 
frames whose display time is within Gj can be decoded before 
its display deadline. Note that the Global-Grouping is 
applicable to the general applications with deadlines. 

During the grouping procedure, the average workload in the 
time zones (D0, D1), (D0, D2), … , (D0, Dn) will be tested and 
the intervals in the time zone that has the maximum average 
workload will be grouped together. After that a new search 
will start on the rest of the intervals. The pseudo code of the 
Global-Grouping algorithm is given in Fig. 5, where Ci is the 
decoding workload of frame i, which should be displayed at 
time Di.

As mentioned in section II, a B frame has two reference 
frames. Both of them are received before the B frame and they 
also should be decoded before the B frame. 

Fig. 5. Global-Grouping algorithm 

Start code Information 
field 

mb_intra CBP Motion 
FW 

Motion 
BW 

1 2 7 8 9…

1. Set size as the total number of frames; 
2. index = 0, j = 0; 
3. while index < size
4.   for k = index+1 to k = size
5.     find out the value of k, which makes 

k

ii index

k i

C

D D
=

−
maximum; 

6.     make workload from index+1 to k group Gj;
7.    end 
8. index = k, j++, return to step 3;



Display 
deadline

10 32 54 76 98

Decoding end
1 32 54 76 98

4 65 87 109 1211
Input arrival

Decoding latency 
(input buffering)

Displaying lag 
(output buffering)

0

3

TABLE 2  WORKLOAD REARRANGEMENT 

index 1 2 3 4 5 6 7 8 

receive order I1 P2 B3 B4 P5 B6 B7 I8

display order I1 B3 B4 P2 B6 B7 P5 I8

Workload (Ci) I1 P2+B3 B4 0 P5+B6 B7 0 I8

While the forward reference frame is displayed before the B 
frame, the backward reference frame is display after the B 
frame. Therefore, care should be used when calculating the 
workload Ci. TABLE 2 shows the relationship of receiving 
order, display order and rearranged decoding workload in each 
display interval. Note that the Global-Grouping enables the 
decoder to borrow the time from the previous interval; 
therefore the time to decode Ci could be larger than one T.

The result of Global-Grouping has some interesting 
characteristics as Theorem 1 and 2 states. The proof is 
straightforward and will be skipped due to the space 
limitation.  

Theorem 1: For each group Gj, we can always find a 
constant voltage Vj, under which the decoding of each frame 
can be finished before its display deadline and the idle time of 
the processor is 0. Vj is monotonically decreasing as j
increases and it is proportional to the average workload in this 

group: 
−−

=
i ii

i i
avg DD

C
C

)( 1
, where (Di-1, Di)∈Gj.   

Theorem 2: The last frame of a group has the largest 
workload amongst the frames within this group. Its decoding 
is finished right at its display deadline. Other frames are 
decoded before their display deadline provided that the 
workload information is accurate. 

Input and output buffers are needed for the Global-Grouping 
to guarantee that there is always a frame available for 
decoding or displaying. An example is illustrated in       

Fig. 6. In order for each frame to be ready before their 
decoding starts, the receiving procedure must start 3T earlier 
than the decoding procedure. A buffer at the input side must be 
used to store the incoming frames during this 3T delay period. 
Therefore, the size of the buffer is 3 frames. Furthermore, 
since there is a displaying lag, output buffers are needed to 
store those that finish decoding before their display deadline. 
In the example, a buffer of 2 frames is needed. It is obvious 
that the input buffer size (IB) and the output buffer size (OB)
always have the following relation 1±= OBIB .

      

Fig. 6. Input and output buffering

The IB can be calculated as the following equation 

))](([maxmax __
,

=−= i
Gofstartk

javg

k
ij

j C
C

flooriIB ,  (2) 

where Cavg,j is the average workload of group Gj. The 
experiments show that, although the Global-Grouping needs 
fewer buffers than the Optimal-VS, the amount is still quite 
considerable. 

The Global-Grouping is an offline strategy and it needs the 
workload profile of the entire video stream. Compared with 
the optimal solution, it requires less buffer while achieves a 
comparable energy reduction with less display latency. This 
algorithm is useful if the processor decodes and displays 
certain movie clips repeatedly. It can also be applied at the 
encoder side where the workload profile is available given the 
condition that the encoder can communicate with the decoder 
about the grouping and voltage selection results. 

C. Dynamic-Grouping 

The Dynamic-Grouping is an online heuristic based on 
Global-Grouping. It buffers the input frames up to a certain 
window size (e.g. a GOP size). The workload of each frame 
inside the window is predicted and grouping is applied within 
this window. When a new frame comes in, the decoder first 
predicts its workload loadi then updates the grouping 
dynamically as described in  

Fig. 7. Here, M is the number of groups in current window 
and Cavg, j is the average workload of the jth group. 

The size of the input buffer for the Dynamic-Grouping is 
equal to the size of the window while the size of the output 
buffer can be calculated using equation (2). Compared with 
GOP-optimal, Dynamic-Grouping gives better trade-off 
between energy and buffer size.  

Fig. 7. Dynamic group update 

V. EXPERIMENTAL RESULTS AND DISCUSSION

The presented DVS algorithms are tested on several 
different movie clips. The statistics of these clips is given in 
TABLE 3.  

We simulated and compared the proposed DVS algorithms 
with three other algorithms. 1) Frame-based, which decodes 
one and only one frame in each display interval, 2) Feedback 
control based [4] and 3) Optimal-VS. 

1. M = index of the last group in the current window; 
2. set the incoming frame to be group M+1;
3. for l = M+1 to 1
4.     if (Cavg,l > Cavg,l-1)
5.         merge group l and l-1  
6.         set the index of the new group as l – 1 
7.     else 
8.         stop 
9. end  



TABLE 3  CHARACTERISTICS OF MPEG CLIPS

MPEG clips 
name index 

Frame 
type 

#  of 
frames 

GOP 
size 

hakkinen 1 I,P,B 799 12 
bobo 2 I,P,B 679 90 
ski 3 I,P,B 1513 15 

blazer 4 I,P,B 2998 12 
wg 5 I,P 130 6 

The energy values are reported as the percentage 
degradation over the optimal-VS approach. The buffer sizes 
are the size of display buffer in the unit of frames. Note that 
for the Global-Grouping and Optimal-VS, the input buffer size 
is the same as that of the output buffer plus or minus 1. For 
Dynamic-Grouping and GOP-optimal, input buffers of at most 
one GOP and two GOPs long are used, respectively. Some 
input buffers are also needed in feedback approach to 
guarantee that there is always a frame available to decode 
whenever the previous one finishes decoding. For all 
algorithms, the decoding latency is proportional to the input 
buffer size.  

TABLE 4 gives the energy and buffer usage of different 
DVS algorithms when the workload prediction is perfect. It 
shows that while the Global-Grouping always gives similar 
energy reduction as the optimal one, it does not have much 
reduction in the buffer requirements. The Dynamic-Grouping 
gives the best balance between the energy reduction and the 
buffer requirements.  

TABLE 5 gives the energy and the buffer usage when the 
workload prediction is not perfect. The workload prediction is 
given by our prediction model discussed in Section III. The 
accuracy of prediction has a great impact on the performance 
of DVS techniques, in terms of deadline missing and buffer 
usage, however, not so large impact on the energy dissipation. 
Since a frame will be dropped if it misses the decoding 
deadline, this causes unfair energy comparison. We scaled up 
the predicted workload by 5%, which is enough to make sure 
that the deadline miss rate is zero. For some cases, this scale 
increases the buffer usage however decrease the energy 
dissipation. The results show that both Global-Grouping and 
Dynamic-Grouping are pretty robust when working with our 
workload predictor. 

TABLE 4  ENERGY AND BUFFER USAGE OF DVS ALGORITHMS WITH PERFECT 
WORKLOAD PREDICTION 

MPEG clips 1 2 3 4 5 
Energy (%) 200.3 65.1 88.6 118.2 55.8 Frame-based 

Buffer 1 1 1 1 1 
Energy (%) 3.3 18.1 20.2 13.4 17.7 Feedback 

Buffer 9 10 9 10 9 
Energy (%) 1.4 4.5 11.8 5.6 10 GOP 

optimal Buffer 3 9 3 5 2 
Energy (%) 2.2 2.4 10.1 4.1 10 Dynamic 

grouping Buffer 3 12 4 2 2 
Energy (%) 2.1 2.0 2.1 0.5 9.8 Global 

grouping Buffer 8 15 71 56 7 
Energy (%) 0 0 0 0 0 Optimal 

Buffer 26 26 97 77 9 

TABLE 5 ENERGY AND BUFFER USAGE OF DVS ALGORITHMS WITH IMPERFECT 
WORKLOAD PREDICTION

Global grouping Dynamic 
grouping Clips 

Energy 
(%) 

Buffer 
size 

Energy 
(%) 

Buffer 
size 

1 0.78 32 2.8 3 
2 0.99 18 1.4 12 
3 2.7 79 11.8 5 
4 0.3 66 10.7 7 
5 0.4 9 4.6 4 

VI. CONCLUSIONS

In conclusion of our work, we present a workload prediction 
model, which is motivated by detailed analysis of MPEG 
decoding procedure. The predictor utilizes the block level 
statistics of each MPEG frame and gives highly accurate 
prediction results. Three DVS algorithms are further presented. 
All of which gives comparable energy reduction as the optimal 
voltage scaling and work robustly with our predictor. The 
experimental results show that the Dynamic-Grouping 
algorithm gives the best trade-off between energy reduction 
and the quality of decoding.  
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