
Using Speculative Computation and Parallelizing techniques to improve
Scheduling of Control based Designs

Roberto Cordone‡ Fabrizio Ferrandi# Gianluca Palermo#
Marco D. Santambrogio# Donatella Sciuto#

‡Università Statale di Milano - DTI #Politecnico di Milano - DEI
via Bramante, 65 pza Leonardo da Vinci, 32
26013, Crema, ITALY 20133, MILANO, ITALY
Tel: +39-0373-898-054 Tel: +39-02-2399-3479
Fax: +39-0373-898-010 Fax: +39-02-2399-3411
e-mail: cordone@dti.unimi.it e-mail: {ferrandi—gpalermo—santambr—sciuto}@elet.polimi.it

November 18, 2005

ABSTRACT

Recent research results have seen the application of parallelizing
techniques to high-level synthesis. In particular, the effect of spec-
ulative code transformations on mixed control-data flow designs has
demonstrated effective results on schedule lengths. In this paper we
first analyze the use of the control and data dependence graph as an
intermediate representation that provides the possibility of extracting
the maximum parallelism. Then we analyze the scheduling problem
by formulating an approach based on Integer Linear Programming
(ILP) to minimize the number of control steps given the amount of re-
sources. We improve the already proposed ILP scheduling approaches
by introducing a new conditional resource sharing constraint which is
then extended to the case of speculative computation. The ILP formu-
lation has been solved by using a Branch and Cut framework which
provides better results than standard branch and bound techniques.

I. INTRODUCTION

Today high-level synthesis systems need to deal with de-
signs much more complex than a few years ago. Synthesis re-
sults were improved by applying standard optimizations such
as re-timing and algebraic transformations, as shown in [21],
while nowadays speculative code motion techniques demon-
strate their effectiveness on scheduling lengths.
Those new techniques are well known in the software com-
pilers area [7, 5], and their application to the high level syn-
thesis problem has been proposed by Santos et al. [4] and
Rim et al. [23]. Several works such as the Waveschedule ap-
proach [12] have introduced the speculative execution as an
efficient method to achieve the goal of the minimization of
the expected number of cycles. With the exception of [22],
no exact methods provide support to speculation of control-
dependent specifications. More recently, Gupta et al.[10] have
defined a methodology based on code motion techniques de-
veloped for parallelizing compilers for high-level synthesis of
C-based specifications.
Starting from previous works on parallelizing compilers
[8, 9], this paper presents a methodology that extracts from

the control and data flow graph of a sequential program a data
structure that exposes the parallelism inherent in the specifica-
tion. The analysis of this data structure commonly used by par-
allelizing compilers, represents the starting point for the defini-
tion of a scheduling technique. In this paper we do not address
the scheduling of specifications with loop control structures.
Therefore, the proposed algorithm works on specifications ob-
tained by removing all feedback control edges.
We analyze the problem by formulating an approach based
on Integer Linear Programming (ILP) to minimize the number
of control steps given the amount of resources. We improve the
already proposed ILP scheduling approaches by introducing
a new conditional resource sharing constraint which is then
extended to the case of speculative computation.
Section II presents a compared analysis of the proposed data
structure with respect to the state of the art for speculative
code transformations on mixed control-data flow designs. Sec-
tion III describes the integer linear programming (ILP) model
that computes a scheduling taking into account the speculative
computation issue. The ILP has been solved by a Branch and
Cut framework [15]. Section IV presents the results obtained
by the proposed approach, while section V concludes by giving
an overview of the future directions of the proposed approach.

II. INTERMEDIATE REPRESENTATION

Language based specifications are usually translated into in-
termediate representations to efficiently manage and analyze
the design specification. Several types of intermediate repre-
sentations have been proposed in literature, each one targeting
different types of applications: data flow graph, control flow
graph, hierarchical task graph (HTG) [8].
HTGs have been defined as intermediate parallel program
representations that encapsulate minimal data and control de-
pendences, and can be used to extract and exploit functional
and task-level parallelism. In particular, the hierarchical task
graph, as defined in [8], is a directed graph HTG whose ver-
tices can be: simple, representing a task with no subtasks,

compound, representing a task that consists of other tasks in
an HTG (e.g., higher level structures such as subroutines or
loops), loop, representing a task that is a loop whose iteration
body is an HTG.
The hierarchical task graph can be extracted from the control
flow graph of a sequential program, by identifying the edges
through data and control dependences analysis [8, 9].
Let us first consider control dependences. A node B is con-
trol dependent on A if A can control whether or not B will be
executed. Ferrante in [6] defines how control dependences can
be identified:
A node B is control dependent on A if, and only if, A is not
post-dominated by B in the CFG, and there exists a directed
path from A to B in the CFG such that every node other than A
on the path is postdominated by B.
Postdominance [14] is the relation defined as follows: in a
directed graph with a distinguished node STOP, a node V is
postdominated by another node W if, and only if, every di-
rected path from V to STOP containsW .
On the other hand, we can define data dependence edges
in this way: a node B is data dependent from node A when
a data transfer from A towards B exists. They can be further
subdivided into three main types: flow dependences (RAW de-
pendences), anti dependences (WAR dependences) and output
dependences (WAW dependences).
In [8, 9] control and data analysis are used to define the
notion of precedence giving some conditions on when a node
precedes another, with the aim of maximizing the overall par-
allelism. Moreover, the precedence notion can be used during
the scheduling of the operations since it only considers the ac-
tual constraints on the execution order of the operations what-
ever is the considered granularity (i.e, instruction, functional
or task level parallelism).
Gupta et al. [10] reconsider these works on parallelism ex-
traction by using HTG as intermediate representation for high-
level synthesis. In particular, they exploit the structural nature
of the HTG to perform the scheduling of the operations with
code motion and speculation. They consider a particular level
of granularity, basic-block, and they slightly modify the defini-
tion of the compound node by adding to that node the follow-
ing control structures: if-then-else, switch-case and sequence
of HTGs. With these modifications they loose the power of the
control dependence graph, the edges between the nodes are the
same of the control flow graph (CFG), but they gain the abil-
ity to perform code motion transformations that improve the
synthesis results in control intensive designs.
To better understand the differences between control flow
graph and its corresponding control dependence graph (CDG),
let us consider the example reported in Figure 1, assuming that
no data dependences are present. Note that, the CFG imposes
more constraints on the order of nodes than the CDG. In fact,
without data dependences, the edges of the CFG A-E, B-E,
C-D and D-E do not express true precedences between the op-
erations of the specification.
[10] defines several transformations which can be classi-
fied into the following four types: Across Hierarchical Blocks,
Speculation, Reverse Speculation and Conditional Specula-
tion. Across Hierarchical Blocks: movement of operations
across entire hierarchical blocks, Speculation: unconditional

A

B

D

C

E

ENTRY

EXIT

IF node

FT

A

B DC

E

ENTRYEXIT

IF node

T F F

Fig. 1. Comparing control flow graph (a) and control dependence graph (b).

execution of operations that were originally supposed to have
executed conditionally, Reverse Speculation: where opera-
tions before conditionals are moved into subsequent condi-
tional blocks and executed conditionally, Conditional Specu-
lation: in which an operation is moved up and duplicated into
preceding conditional branches and executed conditionally.

HTG_0

HTG_1

BB0

cond = a < b

b = e - f

BB1

BB2

x = a + b

T

BB3

a = c - d

x = a - b

F

BB4

BB5

y = e + f

z = y + x

trailblazing

ENTRY

b=e-f cond=a<b

IF0<cond>

y=e+f

z=y+x

x=a+b

x=a-b

T

a=c-d

F

F

EXIT

(a) (b)

Fig. 2. (a) Code transformation of type 1, starting from the HTG of Figure 8
of [10]. (b) Corresponding control and data dependences graph.

The first transformation considered (i.e., code transforma-
tion of type 1) moves blocks following the Trailblazing code
motion technique [18] across the nodes of the HTG. Consider
for example the operation y = e+ f of basic block BB5 re-
ported in Figure 2(a). This operation does not have any data
dependence with any node of the if-HTG node, therefore ex-
ploiting the hierarchy of the HTG it can be easily moved from
BB5 to BB0.
Let us now analyze the same example but considering a dif-
ferent data structure. Starting from the control flow graph we
build the CDG and from the flow dependences of the specifi-
cation, we build the data dependence graph (DDG). The graph
built by joining the CDG and the DDG for the example of Fig-

ure 2(a) is reported in Figure 2(b). On this graph, the identifi-
cation of the control step of the operation y = e+ f does not
require anymove across the hierarchy. The graph imposes only
two precedence constraints: one specifying that the node must
be executed after the ENTRY node and the other requiring that
the node must be executed before the z = y+ x operation. As
shown by [10] anti and output data dependences are required
to correctly build the data-path after the scheduling step. [10]
performs dynamic variable renaming during the scheduling.
We perform this step after the scheduling has been performed.
Therefore, if the operation b = e− f has been scheduled be-
fore the operation cond= a< b, the anti dependence edge will
require a renaming of variable b.

HTG_0

HTG_1

BB0

c = in1 < in2

BB1

BB2

a = in1 + in2

T

BB3

a = in1 - in2

F

Speculation

BB4

Speculation

BB5

ou = a - in3

Conditionally
Speculated

Conditionally
Speculated

ENTRY

c=in1<in2

IF0<c>

ou=a-in3

a=in1+in2 a=in1-in2

EXIT

(a) (b)

Fig. 3. (a) Code transformation of type 2 and 4, starting from the HTG of
Figure 6 of [10]. (b) Corresponding control and data dependences graph.

Speculation (code transformation of type 2) is shown
through the example of Figure 3. The HTG based specula-
tion solves the problem of executing an operation before the
branch condition by performing a transformation and then the
scheduling of the graph. In our approach, we remove the con-
trol edges from the graph and then we change the scheduling
algorithm with respect to [3]. In particular, if an operation is
scheduled before the branch condition no sharing of resources
is allowed, while a resource sharing can be exploited if the op-
eration is scheduled after the branch condition. Next section
details the ILP-formulation of the resource sharing and of the
speculation constraint. Figure 3(a) shows also how the trans-
formation of type 4 can be performed on the HTG. The graph
corresponding to the combined CDG and DDG of Figure 3(b)
imposes only relative constraints on the operation ou= a− in3.
Therefore, if speculation moves the operations a = in1+ in2
and a = in1− in2 one step earlier, the same can be done on
operation ou= a− in3. Similar conclusions can be drawn also
for reverse speculation. Unfortunately, there are some cases
in which parallel execution of an operation does not give the
same result as performing conditional or reverse speculation.
In general, transformations of type 3 and 4 may require CFG
transformations not easily manageable by an ILP-formulation
or by a standard scheduling algorithm. Therefore the method-
ology proposed in this paper performs a scheduling on the
CDG+DDG as extracted from the sequential specification per-

forming code transformations of type 1 and 2. In any case the
proposed methodology can take advantage of transformations
of type 3 and 4 by coupling the proposed scheduling approach
with a transformation toolbox as the one proposed in [10].

III. SCHEDULING MODEL

This section presents an integer linear programming model
for the scheduling problem. Gebotys et al. in [3] analyzed
the classical ILP model of the scheduling problem, which con-
sists of assignment, precedence and capacity constraints. They
also developed a family of additional constraints that, though
redundant for the ILP formulation, remove a large subset of
fractional solutions when the integrality constraints on the de-
cision variables are relaxed. As a consequence, the contin-
uous relaxation provides a much tighter bound and a nearly
integer, if not even integer, solution. This information can be
exploited by an ILP solver to compute an optimal solution in
shorter time. Next section presents a new way to express the
capacity constraints in order to better support the scheduling
of control intensive designs. In fact, the new formulation also
allows the transformation of type 2.
A code is modeled as a directed acyclic graph, whose nodes
represent single operations (or blocks of operations), while the
arcs represent precedence constraints due to data or control de-
pendences between nodes. A branching block is defined as a
condition statement and a number of alternative paths P, one of
which is performed, according to the outcome of the condition
statement. Each path is a set of code operations and, possibly,
branching blocks.
Since only one of the alternative paths actually needs to be
followed (based on the outcome of the condition statement),
operations belonging to different alternative paths can be as-
signed to the same functional unit in a given control step. No-
tice that the operations included in a branching block could
also be performed before the condition statement, if no prece-
dence constraint forbids it. In that case, however, no pair of
operations can share the same functional unit in a control step.
Let I denote the set of all functional unit types available, K
the set of operations and J the set of control steps available
(from 0 to the length of a heuristic schedule). Lik is the number
of control steps that operation k, when mapped on a functional
unit of type i, takes to return ready to accept successive data
inputs after a previous execution. Cik is the number of control
steps that operation k, when mapped on a functional unit of
type i, needs to be executed. Note that Lik ≤ Cik. Ni is the
number of functional units of type i available.
The Boolean variables xi jk model the assignment of code
operations to control steps and functional units: when xi jk = 1
operation k starts executing at control step j and it is assigned
to a functional unit of type i; otherwise xi jk = 0. All variables
xi jk concerning functional units or control steps incompatible
with operation i are undefined.
The integer variables zi jB provide the number of resources
of type i occupied in the control step j by branching block B.
The integer variable w is the makespan, that is the last control
step in which a code operation is performed.
The aim of the scheduling problem is to minimize the

makespan:
min(w)

subject to

w≥ ∑
i j

(j+Ck,i−1)xi, j,k k ∈ K

Each operation is assigned to a specific control step and
functional unit type:

∑
i j
xi jk = 1 k ∈ K

For each precedence relation k ≺ k′, operation k cannot be
scheduled after operation k′.

∑
i

(
∑
j≤ jc
xi jk′ + ∑

j≥ jc−Cik+1
xi jk

)
≤ 1

where
k ≺ k′, jc ∈ Γkk′

The first sum states whether operation k′ starts before step jc,
while the second sum states whether operation k ends after
it. These two events are mutually exclusive. The condition
needs to be checked only in the time interval Γkk′ in which
both events are feasible:

Γkk′ = [Lkk′ ;Rkk′]

where

Lkk′ =max
(
asap

(
k′

)
,asap(k)+min

i
Cik−1

)

Rkk′ =min
(
alap

(
k′

)
,alap(k)+max

i
Cik−1

)
As in [3], the elementary precedence constraints are combined
through a node packing approach, in order to restrict the search
space.
The maximum number of functional units used by the whole
specification is known:

zi jB0 ≤ Ni i ∈ I, j ∈ J

For each branching block B, each alternative path P of B
employs at most zi jB functional units of type i in control step
j.

∑
k∈P

∑
j−Lki+1≤ j′≤ j

xi j′k+ ∑
B′∈P
zi jB′ ≤ zi jB i∈ I, j ∈ J,P∈B,B∈B

where B is the set of all branching blocks, and the sum over j′
takes care of the fact that operation k could occupy functional
unit i in control step j, even if it starts before, due to its latency.
Previous ILP approaches ([3]) support conditional branches
descriptions generating a similar capacity constraint for each
set of mutually exclusive code operations or code operations
from each possible path generated by conditional branches.
Since the proposed constraint is local to the branching block
B, the number of constraints required by the model is not ex-
ponential but linear in the number of conditional branches.

The previous capacity constraints operate separately on each
alternative path in block B. However, if the operations con-
sidered are performed before the condition statement which
defines block B, they cannot share the same resources. There-
fore, in that case the left-hand-side term must be summed over
all paths:

∑
P∈B

(
∑
k∈P

j−Lki+1
∑
j′= j

xi j′k+ ∑
B′∈P
zi jB′

)
≤ zi jB+M

⎛
⎝1− ∑

i′∈IB
∑

j′≥ j−CkBi′+1
xi j′kB

⎞
⎠

i ∈ I, j ∈ J,B ∈ B \{B0}
where kB is the condition statement associated with block B
and IB the subset of unit types which can perform kB. The sum
on the right hand side states whether the condition statement
terminates after control step j or not. In the second case, M
is a constant large enough to make the constraint redundant: a
sufficient value isM = Ni.

IV. EXPERIMENTAL RESULTS

The approach presented in this paper has been implemented
in a high-level synthesis framework called PandA. The frame-
work takes as input C-code and generates optimized sched-
uled code. PandA uses as front-end a customized interface
to the GNU GCC compiler [1]. Starting from version 3.4,
GCC provides the possibility of dumping on file the syntax
tree structure representing the compiled source code. The com-
bined CDG+DDG data structure is built starting from this syn-
tax tree structure. The use of GCC allows the introduction
of several compiler optimization techniques into a high-level
synthesis framework, such as loop unrolling, constant propa-
gation, dead code elimination, common subexpression elimi-
nation, etc. Moreover, the GCC front-end provides an inter-
nal representation (i.e., GIMPLE [16]) which is a language-
independent tree representation, thus allowing future partial
support of languages such as C++ and Java. The ILP formu-
lation has been solved by using a Branch and Cut framework.
Branch and cut is a refinement of the standard linear program-
ming based branch and bound approach[17]. The branch and
cut approach, with respect to the branch and bound technique,
looks for linear inequalities which are violated by the current
fractional optimal solution but are respected by all feasible in-
teger solutions of the problem. By adding these inequalities
(named cuts or valid inequalities) the continuous relaxation
achieves a tight bound and a less fractional solution. There are
several standard techniques to generate valid inequalities, both
for general ILPs and for specific families of problems. The
node packing approach of Gebotys is one of the latter. The
open source package COIN-OR [15] provides a set of tools
among which an ILP solver with the capability of generating
the most important families of valid inequalities. Those which
are proved effective to solve the scheduling problem are the
Probing, Gomory and Clique inequalities.
The validation of the presented approach has been per-
formed using the results obtained by the Spark [10] framework
as a comparison. All the computational times reported in the
result tables refer to a 1.7GHz Pentium IV Linux Workstation.
To produce the experimental results, we have chosen a set
of 6 well known standard benchmarks for the problem of high

level synthesis. A first subset is composed of small bench-
marks derived from [19] (sehwa), [20] (maha) and [11] (kim),
while the second one is composed of a set of multimedia ap-
plications extracted from the Mediabench suite [13] (adpcm
encode, adpcm decode, motion vector for Mpeg2) taken from
[2]. Table I reports the number of operations and branching
blocks for the above mentioned set of benchmarks (upper part
of the table) as well as a further set used in a following analysis
on ILP complexity (lower part of the table).
The experimental results compare three different schedul-
ing techniques: SPARK, LIST and ILP. SPARK: shows the re-
sults obtained by the Spark framework enabling all its features,
e.g. code motion, speculation; LIST: represents the results ob-
tained by applying the List-Based scheduling techniques with
the presented intermediate representation1; ILP: represents the
results obtained by applying the ILP formulation presented in
section III using our intermediate representation;
The results for each technique and each target benchmark
are shown in terms of the computational time needed to gen-
erate the schedule and the number of control steps. The com-
putational times are average values obtained by applying the
scheduling processes for ten times.
The table II shows the obtained results with the following
different configurations:

• ARCH-1 - 1-Add, 1-Sub, 1-Mul, 1-Cmp, 1-Sh, 2-[]

• ARCH-2 - 1-Add, 1-Sub, 1-Mul, 2-Cmp, 1-Sh, 2-[]

• ARCH-3 - 2-Add, 2-Sub, 1-Mul, 2-Cmp, 1-Sh, 2-[]

where X−< res>means that X resources for< res> are allo-
cated. Add, Sub,Mul, Cmp, Sh and [] stand for adder, subtrac-
tor, multiplier, comparator, shifter and array address decoder,
respectively.
Three scheduling techniques are applied using three differ-
ent architectures. With the first architecture (ARCH-1) the
number of control steps obtained using the Spark framework is
always greater or equal to the value obtained by the two meth-
ods that use the intermediate representation presented in the
paper. Moreoever, our approach increases its effectiveness on
applications of increasing complexity. The ILP approach im-
proved the results obtained by LIST, in terms of control steps
forMotion Vector (11 w.r.t. 12) and Sehwa (8 w.r.t. 9).
Similar results are shown with the other two configurations
ARCH-2 and ARCH-3, where the advantage obtained by the
proposed scheduling over SPARK is up to 27% for ARCH-2
and up to 33% for ARCH-3, both for the AdpcmEncode bench-
mark.
Experimental results that take into account the time needed
for the scheduling show that this value is comparable for
SPARK and LIST. On the other side, the ILP approach requires
a time which is one order of magnitude greater with respect
to SPARK and LIST, excluding the Motion Vector benchmark
where for the architectures ARCH-1 and ARCH-2 it is up to
two order of magnitude larger. As we expected, by increasing
the number of functional units available for the scheduling, the
problem becomes easier to solve and the time needed for the
scheduling decreases.
1List-based scheduling can be directly adapted to the combined

CDG+DDG data structure

To better understand the power of the branch and cut ap-
proach with respect to the branch and bound technique we
performed further experiments on a larger set of benchmarks.
In particular, we have enriched the set with some well known
data-intensive high level synthesis benchmarks.
Table III compares the results obtained by the LIST ap-
proach with a branch and bound (B&B) and branch and cut
(B&C) applied to the ILP formulation described in section III,
reporting the number of control steps obtained and the compu-
tational time required. Note that, the LIST approach is heuris-
tic while the other two also proved the optimality of the so-
lution if the required time is less than the time limit of 1000
seconds.
Table III clearly shows that branch and cut is more scalable
than the standard branch and bound, solving several problems
in a reasonable computation time with the exception of two
cases. In fact, on small benchmarks the overhead due to the
generation of valid inequalities makes branch and cut slower.
On the other hand, the branch and bound is not able to solve
11 of the 26 scheduling problems while branch and cut solves
all apart 2 benchmarks.

Benchmark #Operations Branching Blocks
Kim 33 3
Sehwa 29 6
Maha 29 6

MotionVector 100 11
AdpcmDecode 87 11
AdpcmEncode 108 15
Chemical 38 1
Dct wang 57 1
Ewf 39 1
Paulin 15 1
Pr1 51 1
Tseng 13 1
Wdf 44 1

TABLE I
OPERATIONS AND BRANCHING BLOCKS.

V. CONCLUDING REMARKS

The complexity of design for modern applications has ex-
tremely grown in recent years. This means that the standard
techniques for high level synthesis can be considered obsolete
for a certain number of new designs. To cope with this prob-
lem, recent research results have demonstrated, for example,
the effectiveness of speculative code transformations on mixed
control-data flow design to reduce the length of the resulting
schedules. Our work proposes an approach based on a new
data structure, the control and data dependence graph, that al-
lows a better exploitation of parallelism present in the origi-
nal specification. Moreover, this work introduces an Integer
Linear Programming formulation of the scheduling problem,
which minimizes the number of control steps given the amount
of resources. The capacity constraint introduced has been ver-
ified to be well suited to manage resource sharing constraints
in case of speculative computations. The experimental results
show the validity of the proposed methodology. In general,
the quality of the solution provided by the heuristic approach
is nearly optimal showing that the data structure based on the

ARCH-1
SPARK LIST ILP

Control Steps Time [sec] Control Steps Time[Sec] Control Steps Time[sec]
Kim 10 0.030 10 0.013 10 0.169
Sehwa 8 0.046 9 0.015 8 0.332
Maha 9 0.049 9 0.013 9 0.125

MotionVector 15 0.309 12 0.173 11 28.2
AdpcmDecode 18 0.110 13 0.212 13 3.357
AdpcmEncode 18 0.144 14 0.210 14 2.011

ARCH-2
SPARK LIST ILP

Control Steps Time [sec] Control Steps Time[Sec] Control Steps Time[sec]
Kim 10 0.054 10 0.012 9 0.163
Sehwa 7 0.045 7 0.014 7 0.132
Maha 9 0.054 9 0.012 9 0.129

MotionVector 13 0.274 12 0.177 11 26.2
AdpcmDecode 15 0.122 11 0.190 11 0.807
AdpcmEncode 18 0.145 13 0.519 13 1.237

ARCH-3
SPARK LIST ILP

Control Steps Time [sec] Control Steps Time[Sec] Control Steps Time[sec]
Kim 8 0.036 8 0.010 8 0.074
Sehwa 6 0.049 6 0.013 6 0.085
Maha 9 0.054 9 0.011 9 0.123

MotionVector 10 0.323 10 0.162 9 0.968
AdpcmDecode 15 0.114 10 0.164 10 0.474
AdpcmEncode 18 0.148 13 0.367 13 0.843

TABLE II
EXPERIMENTAL RESULTS OBTAINED USING DIFFERENT ARCHITECTURES.

ARCH-1
LIST ILP-B&B ILP-B&C

Control Steps Time [sec] Control Steps Time[Sec] Control Steps Time[sec]
Kim 10 0.013 10 0.099 10 0.169
Sehwa 9 0.015 8 0.201 8 0.332
Maha 9 0.013 9 0.080 9 0.125

MotionVector 12 0.173 12 >1000 11 28.2
AdpcmDecode 13 0.212 13 >1000 13 3.357
AdpcmEncode 14 0.210 14 2.583 14 2.011
Chemical 19 0.021 19 >1000 19 56.4
Dct wang 25 0.031 25 >1000 25 >1000
Ewf 21 0.021 21 >1000 21 >1000
Paulin 8 0.005 8 0.044 8 0.137
Pr1 19 0.022 19 >1000 19 48.56
Tseng 6 0.006 6 0.021 6 0.057
Wdf 28 0.020 28 >1000 28 84.21

ARCH-3
LIST ILP-B&B ILP-B&C

Control Steps Time [sec] Control Steps Time[Sec] Control Steps Time[sec]
Kim 8 0.010 8 0.056 8 0.074
Sehwa 6 0.013 6 0.059 6 0.085
Maha 9 0.011 9 0.078 9 0.123

MotionVector 10 0.162 9 5.507 9 0.968
AdpcmDecode 10 0.164 10 0.317 10 0.474
AdpcmEncode 13 0.367 13 0.783 13 0.843
Chemical 19 0.020 19 >1000 19 49.03
Dct wang 24 0.031 24 >1000 23 342.7
Ewf 19 0.020 19 >1000 19 182.7
Paulin 8 0.005 8 0.047 8 0.129
Pr1 18 0.022 18 >1000 18 36.717
Tseng 5 0.005 5 0.014 5 0.033
Wdf 17 0.016 17 0.145 17 0.620

TABLE III
COMPARISON OF RESULTS OBTAINED WITH LIST BASED SCHEDULING, STANDARD BRANCH AND BOUND AND BRANCH AND CUT.

combined CDG+DDG is better than other intermediate repre-
sentations previously proposed in literature. Therefore, future
work will consider the introduction of speculative computation
into the List based algorithm. The ILP approach has shown
reasonable execution time and can be fruitfully used to opti-
mize kernel functions, where a larger computation time can be
afforded.

VI. ACKNOWLEDGMENTS

This publication has been part funded by the EuropeanCom-
mission’s Sixth Framework Programme.

REFERENCES

[1] GCC - GNU Compiler Collection. http://gcc.gnu.org.

[2] Spark synthesis benchmarks ftp site.
ftp://ftp.ics.uci.edu/pub/spark/benchmarks.

[3] M. I. H. Catherine H. Gebotys. Global optimization ap-
proach for architectural synthesis. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Sys-
tems, 12(9):1266–1278, September 1993.

[4] L. dos Santos and J. Jess. A reordering technique for
efficient code motion. InDesign Automation Conference,
1999.

[5] K. Ebcioglu and A. Nicolau. A global resource-
constrained parallelization technique. In 3rd Interna-
tional Conference on Supercomputing, 1989.

[6] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The
program dependence graph and its use in optimization.
ACM Trans. on Programming Language and Systems,
9(3):319–349, 1987.

[7] J. Fisher. Trace scheduling: A technique for global mi-
crocode compaction. IEEE Transactions on Computers,
July 1981.

[8] M. Girkar and C. Polychronopoulos. Automatic ex-
traction of functional parallelism from ordinary pro-
grams. IEEE Trans. on Parallel and Distributed Systems,
3(2):166–178, March 1992.

[9] M. Girkar and C. Polychronopoulos. Extracting task-
level parallelism. ACM Trans. on Programming Lan-
guage and Systems, 17(4):600–634, July 1995.

[10] S. Gupta, N. Savoiu, N. Dutt, R. Gupta, and A. Nico-
lau. Using global code motions to improve the quality
of results for high-level synthesis. IEEE Transactions on
CAD, 23(2), February 2003.

[11] T. Kim, N. Yonezawa, J. Liu, and C. Liu. A scheduling
algorithm for conditional resource sharing - a hierarchical
reduction approach. IEEE Transactions on CAD, April
1994.

[12] G. Lakshminarayana, A. Raghunathan, and N. Jha.
Wavesched: a novel scheduling technique for control-
flow intensive designs. IEEE Transactions on CAD, May
1999.

[13] C. Lee, M. Potkonjak, and W. H. Mangione-Smith. Me-
diabench: A tool for evaluating and synthesizing mul-
timedia and communicatons systems. In International
Symposium on Microarchitecture, 1997.

[14] T. Lengauer and R. E. Tarjan. A fast algorithm for finding
dominators in a flowgraph. ACM Trans. on Programming
Language and Systems, 1(1):121–141, 1979.

[15] R. Lougee-Heimer, F. Barahona, B. Dietrich, J. P. Fasano,
J. Forrest, R. Harder, L. Ladanyi, T. Pfender, T. Ralphs,
M. Saltzman, and K. Schienberger. The coin-or ini-
tiative: Open-source software accelerates operations re-
search progress. ORMS Today, 28(5):20–22, October
2001 2001.

[16] J. Merril. Generic and gimple: A new tree representation
for entire functions. In Proceedings of GCC Developers
Summit, pages 171 – 180, 2003.

[17] G. Nemhauser and L. Wolsey. Integer and Combinato-
rial Optimization. Wiley-Interscience Series in Discrete
Mathematics and Optimization. Wiley, 1988.

[18] A. Nicolau and S. Novack. Trailblazing: A hierarchi-
cal approach to percolation scheduling. In International
Conference on Parallel Processing, 1993.

[19] N. Park and A. Parker. Sehwa: A software package
for synthesis of pipelines from behavioral specifications.
IEEE Transactions on Computer-Aided Design, March
1988.

[20] A. Parker, J. Pizarro, and M. Mlinar. MAHA: A pro-
gram for datapath synthesis. In Design Automation Con-
ference, 1986.

[21] M. Potkonjak and J. Rabaey. Optimizing resource utliza-
tion using tranformations. IEEE Trans. on CAD, March
1994.

[22] I. Radivojevic and F. Brewer. A new symbolic technique
for control-dependent scheduling. IEEE Transactions on
CAD, January 1996.

[23] M. Rim, Y. Fann, and R. Jain. Global scheduling with
code-motions for high-level synthesis applications. IEEE
Transactions on VLSI Systems, September 1995.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

