
Key Features of the Design Methodology Enabling a Multi-Core SoC
Implementation of a First-Generation CELL Processor

Dac Pham, Hans-Werner Anderson, Erwin Behnen, Mark Bolliger, Sanjay Gupta, Peter Hofstee, Paul Harvey, Charles Johns,
Jim Kahle, Atsushi Kameyama1, John Keaty, Bob Le, Sang Lee, Tuyen Nguyen, John Petrovick, Mydung Pham, Juergen Pille,

Stephen Posluszny, Mack Riley, Joseph Verock, James Warnock, Steve Weitzel, Dieter Wendel

IBM Systems and Technology Group, Austin, TX
1Toshiba America Electronic Components, Austin, TX

Abstract-- This paper reviews the design challenges that current
and future processors must face, with stringent power limits
and high frequency targets, and the design methods required to
overcome the above challenges and address the continuing
Giga-scale system integration trend. This paper then describes
the details behind the design methodology that was used to
successfully implement a first-generation CELL processor - a
multi-core SoC. Key features of this methodology are broad
optimization with fast rule-based analysis engines using macro-
level abstraction for constraints propagation up/down the
design hierarchy, coupled with accurate transistor level
simulation for detailed analysis. The methodology fostered the
modular design concept that is inherent to the CELL
architecture, enabling a high frequency design by maximizing
custom circuit content through re-use, and balanced power,
frequency, and die size targets through global convergence
capabilities. The design has roughly 241 million transistors
implemented in 90nm SOI technology with 8 levels of copper
interconnects and one local interconnect layer. The chip has
been tested at various temperatures, voltages, and frequencies.
Correct operation has been observed in the lab on first pass
silicon at frequencies well over 4GHz.

Index Terms—CELL Processor, multi-core, SOC, SOI, modularity,
re-use, 64-bit Power Architecture, multi-threading, synergistic
processor, flexible IO, Linux, multi-operating system, virtualization
technology, real-time system, hardware content protection, correct-
by-construction, thermal management, power management, clock
distribution, high-performance latch, local clock buffer, design
hierarchy, design environment, design dependency solution, linear
sensor, digital thermal sensor.

I. INTRODUCTION

he architectural vision of “bringing supercomputer
power to everyday life” is the driving force behind
the CELL processor design, setting a new
performance standard by exploiting parallelism

while achieving high frequency [1]. CELL is designed for
natural human interactions: photo realistic, predictable real
time response, and virtualized resource for concurrent
activities. CELL supports multiple operating systems
including Linux, and is designed for flexibility with a wide
variety of application domains. Other attributes include
hardware content protection, and extensive single-precision
floating-point capability. By extending the Power
Architecture with Synergistic Processor Elements (SPE)
having coherent DMA access to system storage and with
multi-operating system resource management, CELL
supports concurrent real time and conventional computing.

With a dual-threaded Power Processor Element (PPE) and
eight SPEs this implementation is capable of 10
simultaneous threads and over 128 outstanding memory
requests.

The First-Generation CELL processor consists of
the PPE and its L2 cache, eight SPEs [2] each with its own
local memory (LS) [3], a high bandwidth internal Element
Interconnect Bus (EIB) [4], two configurable non-coherent
I/O interfaces, a Memory Interface Controller (MIC), and a
Pervasive unit that supports extensive test, monitoring, and
debug functions. The high level chip diagram is shown in
figure 1 below.

Fig. 1: Processor high level diagram

II. THE DESIGN CHALLENGES FOR GIGA-SCALE
INTEGRATION

II.1. Power & Frequency Walls
Over the last decade, technology scaling has

resulted in leakage power increases of over 1000X (fig. 2).
With gate dielectrics and other device features fast
approaching fundamental limits, a continuation of historical
trends would see passive power surpassing active power
within the next few years. Furthermore, the technique of
increasing frequency by deepening the pipeline has reached
a point of diminishing performance returns if power is taken
into consideration. In the face of this power/performance
wall, increased design efficiency becomes essential. These

T
PXU

EIB (up to 96 Bytes/cycle)

SXU

LS

SXU

LSLS

SXU

LSLS

SXU

LS

 Dual
XDRTM FlexIOTM

LS

SXU

LS

SXU SXU SXU

BICMICL2

L1

SMF SMFSMFSMF SMFSMF SMF SMF

LS

SXU

SMF

PXU

L2

L1

PPE

SPESPU
SXU

LS

16B/cycle(each)

16B/cycle

16B/cycle 16B/cycle
16B/cycle(2x)

32B/cycle

16B/cycle(each)

factors drove the decision to support a wider processor issue
width (e.g. multi-threading) and to increase the number of
architected registers.

0.010.11
0.001

0.01

0.1

1

10

100

1000

Gate Length (microns)

Active
Power

Passive Power

1994 2004

Po
w

er
 D

en
si

ty
(W

/c
m

2)10S Tox=11AGate Stack

Gate dielectric approaching
a fundamental limit (a few
atomic layers)

Fig. 2: Power Wall

II.2. System Trends and Giga- Scale Integration
Increased system integration is driving processors to

take on many of the functions typically associated with the
system: off load and acceleration, and integration of bridge
chips as shown in figure 3.

Fig. 3: System Trends

III. DESIGN IMPLEMENTATION TO ADDRESS POWER AND
FREQUENCY WALLS

III.1. Components and Libraries Design
Given a short cycle time target, a significant amount

of the chip power is consumed by latches, flip-flops, and
other clocked elements. However, the delay overhead
imposed by standard flip-flops is considerable. Therefore, a
rich set of latches and flip-flops were developed to allow for
both power and delay optimizations. The basic local clock
splitter components are shown in figure 4. In addition to test
controls, the base block accepts a local clock gating signal,
with a small setup time relative to the falling global clock
(cycle boundary). Input setup and hold times are specified
against the falling clock edge, as a result of the built-in
latching action of the base block. Local clocks, to drive

typical master-slave flip-flops, are derived from the common
output point of the base block.

For timing critical paths, a high-performance latch
(HPL) [5, 6] was designed which combines a wide mux (up
to 10-way), relying on a dynamic NOR gate, with a set-reset
latch (fig. 5). The dynamic NOR starts evaluating with the
launch clock, and the input data hold time is limited when all
sel_b inputs are forced high after a fixed delay.

Fig. 4: Local Clock Generation

Dynamic circuits were used in several critical
macros, in the arrays, and in PLAs. All dynamic macros
were latch-bounded (macro-to-macro signals are static).
Signals feeding dynamic logic were usually launched from
the master portion of a flip-flop, and ANDed with the slave
clock (lclk) to provide a signal which resets to 0 every cycle
when lclk is low. Dynamic logic was always followed by a
set-reset latch similar to that used for the HPL shown earlier.

In addition, various rules were adopted to ensure a
“correct-by-construction” design methodology. All circuits
used a common set of clocking components to ensure
uniformity across the design, with no rotation of the
components allowed. An extensive set of electrical and
physical checks and audits were put in place. Finally, a
customized series of yield-related checking rules was
employed to ensure manufacturability of the chip.

The 90nm PD SOI technology offers three oxide
thicknesses (thin oxide, thick oxide for high voltage device,
and decoupling capacitor) and four different VT settings for
the thin oxide devices. Since power was such a critical
design issue, static circuit implementations were favored for
the majority of the design. A variety of static circuit families
were used in full custom designs, with tuners and device
width optimizers used for power-performance tuning. Higher
threshold voltage devices were inserted wherever possible to
cut down on leakage current (no low VT devices were used),
and the threshold voltage for the array devices was adjusted
independently from that of the logic devices. Approximately
40% of the logic was implemented as synthesized random
logic macros (RLMs), with the rest being full custom design.

The local clocking described in figure 4 has several
important features. Overall clock latency and absolute clock

scan

global
clock clk_bclk

fb

scan

lclk

d1clk

d2clk

Base Block

Common Point

clockgate_b

testhold_b

uncertainty is minimized by this scheme since there are only
three gate delays between the global clock input and the data
launch clock (lclk). Also, the common point for both launch
and capture clocks are at the output of the base block,
minimizing the relative uncertainty between launch and
capture clocks. When clocks are in the gated state, lclk is
held inactive, and the capture clock is held high. The system
state is therefore stored in the slave latch.

d

sel_b
Wide mux

clk_b lclk

lclk

clk_b

q
evaluation
window

Base

Block
clk_b

sel_b

global clock

scan_b

sel

Fig. 5: High performance latch

For power reduction, the standard flip-flop can be
run in pulsed-mode, with a clock configuration shown in
figure 6. In this case the slave clock is pulsed in normal
operation, and master clock is held high. There is also a
“chicken switch” which allows running in normal master-
slave clocked mode if race problems are seen in the
hardware. A non-scannable pulsed latch was also supported,
minimizing area, power, and latency in situations where a
longer hold time could be tolerated.

scan

global
clock

clk

fb

scan

clockgate_b

testhold_b

normal
mode

normal
mode

lclk

d2clk

d1clk

feedback
nand2

Not used for non-scan
latches

Fig. 6: Standard Flip-Flops

With the widespread use of pulsed latches, and the
controlled use of clock delay elements, it was very important
to have a robust methodology to check for race conditions.

The timing methodology required a design margin to be
applied which scaled with the total path delay of the racing
paths (in addition to a certain fixed margin), as measured
from the common point of divergence. This ensured that race
conditions with larger uncertainties were designed with
correspondingly larger margins.

III.2. Clock Distribution
The chip contains three distinct clock distribution

systems, each sourced by an independent PLL, to support
processor, bus interface, and memory interface requirements.
A main high frequency clock grid covers over 85% of the
chip, delivering the clock signal to the processors and
miscellaneous circuits. Second and third clock grids, each
operating at fractions of the main clock signal are
interleaved with the main clock grid structure, creating
multiple clock frequency islands within the chip. All clock
grids were constructed on the lowest impedance final two
layers of metal, and were supported by a matrix of over 850
individually tuned buffers. This enabled control of the clock
arrival times and skews, especially on the main clock grid,
which supports regions of widely varying clock load
densities. As shown in figure 7, final worst-case clock skew
across chip was less than 12ps. High frequency clock
distribution optimization and verification needed models
which included frequency sensitive inductance and
resistance phenomena [7]. These models were built from
data extracted from combined clock and chip power
distributions, two dimensional cross sections, and
capacitance models extracted from three dimensional
sections. Reduced clock grid power dissipation was achieved
through optimization of buffer drive strengths, grid wire
periodicity, clock wire to return path spacing, and clock twig
wire widths. Together, these techniques lowered clock
distribution power dissipation by more than 20% compare to
previous design [8].

Fig. 7: Clock skew map

III.3. Thermal and Power management
This SOC presented new challenges in chip thermal

design. The higher heat flux from smaller hot spots hindered

spreading of the heat across the silicon substrate [9].
Extensive thermal analysis carried out early in the design
cycle ensured that the maximum junction temperature, as
well as the average temperature of the die, would end up
within design specifications. Various workloads were
simulated for each component and power maps were
constructed. From these maps, a matrix of small power
sources was created, for use with package and heat sink
models. Thermal models were then created and used to
simulate both steady state and transient thermal behavior.
These data were analyzed to improve the design and floor
plan of the chip, and also provided feedback for improved
thermal sensor design (fig. 8).

Due to local heating caused by individual
processing units, sophisticated local thermal sensing
strategies and thermal control mechanisms were used to
allow an aggressive low cost thermal design. The processor
contains a linear sensor and 10 local digital thermal sensors.
The linear sensor is essentially a diode connected to two
external I/Os, used to measure the die's global temperature
and to adjust the system cooling. The digital thermal sensors
provide for early warning of any temperature increase and
for thermal protection.

Fig. 8: Chip thermal map

III.4. Pervasive Design
The pervasive logic comprises all the function

necessary for initialization, clock control, test, performance
monitoring, and error checking and reporting. For a complex
multi-core processor, the design of the pervasive logic is a
key emphasis early in the design cycle. The pervasive
function is implemented as a centralized controller and in
distributed units across the chip. A Performance Monitor
(PFM) is provided to assist with the debug and tuning of
software applications, and an on board logic analyzer (LA)
assists with hardware debug. Both the PFM and LA are
capable of capturing information at speed from all units
across the chip. The PFM and LA also provide the
capability to view single or multiple units. Extensive debug
and control capabilities are provided that can be accessed via
an IEEE 1149.1 interface. For manufacturing support, the

pervasive unit provides array and logic built in self test
(BIST) engines. The ability to scan at speed is provided to
assist with detection of AC related faults. Electronic fuses
are used extensively for array repair and selected chip
personalization.

III.5. Physical Design
Figure 9 shows the die photo with roughly 234M

transistors from 17 physical entities, 580K repeaters and
1.4M nets implemented in 90nm SOI technology with 8
levels of copper interconnects and one local interconnect
layer.

P
P
U

S
P
U

S
P
U

S
P
U

S
P
U

S
P
U

S
P
U

S
P
U

S
P
U

X
I
O

M
I
C

R
R
A
C

B
I
C

MIB

Fig. 9: Die Photo

At the center of the chip is the EIB, composed of
four 128-bit data rings plus a 64-bit tag operated at half the
processor clock rate. The wires were arranged in groups of
four, interleaved with GND and VDD shields twisted at the
center to reduce coupling noise on the two unshielded wires.
To ensure signal integrity, over 50% of global nets were
engineered with 32K repeaters. The SOC uses 2965 C4s
with four regions of different row column pitches attached to
a low cost organic package. This structure supports 15
separate power domains on the chip, many of which overlap
physically on the die. The processor element design, power
and clock grids, global routing, and chip assembly support a
modular design in a building block like construction.

IV. KEY FEATURES OF DESIGN METHODOLOGY

IV.1. Hierarchical Design and Rule-Based Optimization
Methodology
IV.1.1. Design Environment and Database

Structure
There were many challenges in meeting the defined

objectives for setting up the design environment and
database system for the first-generation CELL processor
project. First, the methodology had to support concurrent
design execution of each partition (major core of the design
such as PPE or SPE); meaning design work had to be done
simultaneously and independently by different teams located

in different geographical areas. The existing inherently
hierarchical nature of the design was carefully considered
when defining the physical partitions in order to minimize
the impact of creating discrete physical partitions. Strict
naming convention schemata were applied to the entire
design hierarchy to facilitate parallelization and to prevent
collisions.

Second, the database structure had to support both
the hierarchical objective and also multiple design
disciplines, namely logic design and verification, physical
design and verification, integration, and timing, etc., to allow
for efficient schedule interlocking. An AFS network file
system was used to allow transparent access to design data
by all team members across multiple geographical locations.
Additionally, the database structure had to support common
design libraries and many “shared” macros used in multiple
units or partitions. Any dependency conflicts caused by
usage of different levels of these libraries and macros across
the design hierarchy were resolvable by design dependency
solution algorithms, supported by the design environment.

Third, the design environment had to fully support
the custom processor design methodology by providing
tools, processes, and a workspace for every designer. The
design environment fills the vital linkage between designers
and the supporting database and must do so in a simple and
effective way. Design environment initialization was simply
done with a single command to set up all required tools and
environment variables necessary for design work and the
database interface.

IV.1.2. Front End Design and Verification
Methodology

The front end logic design is captured in VHDL
with all the verification done at the behavioral level. The
chip verification uses Top down Specification / Bottom up
Implementation strategy. For custom circuits, the schematic
netlists and behavioral VHDL are verified for correctness
with equivalency checking tools.

The design is divided into partitions, islands, units,
and modules. All the verification environments and test
coverage needed to create a high quality chip is planned
during High Level Design phase. The verification process is
hierarchical with all the environments and checkers created
at lower level being used in the higher level environments.
For performance and throughput purposes, there are options
to turn off some checkers during run time. The test plan is
based on the coverage plan to guarantee 100% coverage with
written tests. The coverage is also hierarchical i.e. lower
environments designate what portions of the lower level
coverage needs to be hot at higher levels. Extra coverage and
checkers are also added at higher levels for corner cases.

For a complex and large design such as CELL, a
cycle based simulator is used for all the simulation. Both
C++ based and Specman languages are support in the
verification flow. Apart from the specialized test case
generators used in processor core verification; Specman,
C++ and Perl test cases are used for the rest of the design.
Formal verification is also done at module level at various
parts of the chip. Special tools were employed for

Asynchronous clock boundary verification since the
simulator used is cycle based.

In addition to functional verification, pervasive
design is also verified at various levels. This includes Scan
verification, POR verification, Test mode verification, RAS
verification, Trace and Debug Bus verification, etc.
Hardware based accelerators are also used for software
workloads, Boot code, and OS boot verification.

The Grid computing usage for processor design is
demonstrated in this project: over 1.5 trillion simulation
cycles or about 2 million hours of simulation was completed
over multiple Sim farms spanning throughout IBM US &
Germany. This is one of the key attribute for over 98% of
total logic bugs found, the processor core VHDL model
booted Linux, and Chip Bring up exercisers ran in
simulation prior to design tape out.

IV.1.3. Physical Synthesis
The increased volume of synthesized logic on the

CELL processor requires maximizing the productivity of the
random logic macro (RLM) designers. This is accomplished
by accelerating timing closure and automating the build
process.

The design of RLMs used physical synthesis to
accelerate timing closure. Physical footprints were imported
into the synthesis tool to allow accurate timing estimations
during netlist creation and placement. The placed, optimized
netlists were then fed into the physical build process. Early
estimated abstracts allowed for synthesis and sizing before
final contracts were available from the unit integrator.

Fig. 10: Automated RLM Build Process

The RLM physical build process was streamlined
and automated as shown in figure 10. This was
accomplished by creating a supervisor program to “drive”
over 30 individual design steps from netlist import through
final checking. The supervisor script used customizable
templates to control the individual tool interfaces, allowing
designers an automated solution with the flexibility of a
manual build flow. Job management was further improved
by the Report Generation’s Tool (XRG), which generated
web based reports that allowed designers to easily identify
failed job steps and quickly access log files.

Automated RLM Build

 In
itD

es
ig

n

R

ou
te

V
im

In

C
he

ck
in

g

E
xt

ra
ct

io
n

 P

ow
er

 T

im
in

g

...................

14
Steps

.................

16
Steps

WEB based analysis of RLM Build

 T
oo

l

 P

ar
am

et
er

s

 B

ui
ld

 P
ar

am
et

er
s

To ensure high-availability of the tool set,
automated daily regression tests were performed that
exercised the build process and evaluated the results. This
helped identify problems before they were encountered by
designers.

Custom methodology checks were implemented to
ensure that RLMs met design specifications before being
delivered to unit integrators.

IV.1.4. Static Timing Methodology
To simplify timing closure and reduce runtime, all

latches were modeled for the late mode timing run in the
nominal process corner as non-transparent to remove timing
loops. Custom designers; however, were still able to use
cycle stealing techniques with an internally developed
algorithm, which allowed the designer to specify the
effective cycle boundary point within a given window of
transparency. A timing adjust could be applied for all latches
connected to a given LCB, allowing for an improved setup
time, but delaying the launch of the data out of the L2 latch
by a corresponding amount beyond that which the actual
non-transparent latch modeling would require. To lower the
cost for high-volume production, all Local Clock Buffers
(LCB) and latches are designed to support at-speed scan to
reduce manufacturing test time. For power management,
each LCB included global and local clock gating signals.
These signals have to work correctly on a cycle-by-cycle
basis to allow switching from scan to functional mode in one
clock cycle. At-speed scan operation allows us to time both
functional and scan paths in a single timing run without the
need to apply different phases to distinguish scan signals
from regular ones.

For the early mode timing run in the fast corner, we
wanted to ensure enough margins to cover a wide process
range window needed for a high-volume product. To
achieve this, we used the Linear Combination of Delays
(LCD) feature of our Gate-level Static Timer. This feature
allows combining different process corners [10]. Usually, the
coefficients for the three corners, best, nominal, and worst,
add up to be 1, e.g. 15% best, 70% nominal, and 15% worst
case. We used a coefficient of 1.27 plus a fixed amount of
offset for the worst case calculated timing delays. This
allows an increased hold time margin by slowing down the
clock propagation.

IV.1.5. Chip Integration & Physical Verification
Methodology

The chip integration methodology was created to
support parallel, concurrent design at high clock frequencies.
Multiple levels of hierarchies were used to manage the
design problem and enable concurrency. The high level
design process consisted of top-down constraint setting
which lead to the division of the design into functional
islands and units. The constraints became a design budget
for each floorplannable object. Those budgets dictated the
size, aspect ratio, rectilinear outline, pin locations, and
routing layers used for each object. The implementation
process fulfilled the constraints passed down the hierarchy.

The integration methodology was tightly woven

with timing throughout the design process. Very early in the
Floorplanning process, timing shells represented each object
in the hierarchy. These shells enable early timing feedback
to drive partitioning, pipelining, and buffering decisions
from the outset. As the data evolved through the design
process, shell timing rules and Steiner estimates became
schematic based timing rules with 2-D extracted parasitic
and finally fully extracted timing rules and 3-D extracted
routing parasitic. Buffering of signals is performed by an
internally developed algorithm. Unit floorplans are filled
with 4, 8, 16, or 32 bit buffer packs with all bits initially
unused. A process based on Dijkstra’s Algorithm finds the
shortest path from source to sinks across available buffer
packs. Routing was performed using a gridded router and 13
distinct non-default routing rules. Timing estimations that
used particular non-default rules carried directly into the
routing process, insuring that actual routes would mirror the
estimation.

Later in the design cycle, each partition would
analyze and correct coupled noise events predicted on
closely routed nets. Noisy nets were fixed either through
rerouting or by buffering. Electro-migration and missing via
analysis on the power bus was also performed to insure that
the power distribution met design requirements.

Physical verification of all Floorplan blocks
consisted mainly of LVS, DRC, methodology checks, and
formal Netlist verification. All physical verification is done
with cover cells that represent fixed obstructions pushed
down from the parent or the routing contract. Checking with
these views insures that the object will not create a conflict
when stitched into each level of hierarchy. Special
methodology checks enforce specific design requirements
beyond traditional design rules. This would include checks
for pin accessibility, design shapes properly within the
boundary, and power pins on proper pitch, among others.
The formal verification process insured that the final,
buffered Netlist was Boolean equivalent to the original vhdl
description.

IV.2. Transistor Level Analysis
IV.2.1. Circuit & Array Methodology for an

11FO4 Design
For an 11FO4 design within an air-cooled power

envelop, special emphasis was placed on power distribution,
power consumption, clock distribution, signal distribution,
variation due to hot spots, and inductance effects.
Furthermore the chip team also had to plan for multiple
clock domains, cross chip variations in delay, leakage, intra-
chip interconnections, and array bit cell stability early in the
design cycle. Strict design guidelines in layout and circuit
topology were enforced to minimize design variations.

 A major focus of the circuit methodology is on
array design since memory arrays occupy an increasingly
larger share of chip area and it is where more aggressive
design techniques are used to ensure performance. There are
three major challenges for array design at low voltage levels:
stable cell operation (for functionality), leakage current
reduction (for low power), and management of speed

variations (for yield).
A critical part of the circuit/array methodology is a

detailed statistical analysis of cell stability, leakage, and
yield in the early design phase. This analysis will determine
the optimal cell size for a given technology to achieve
stability, power, and yield goals while reducing chip area.
The analysis also helps guide the design team and the
manufacturing team to decide on the device menu for the
technology. A sample result of the statistical analysis is
shown in Figure 11 below. This figure plots the failures of
the cells at various voltage levels for the peripheral logic
circuit (Vdd1) and the core cells (Vdd2). Note that as the
design enters the sub-1V operating voltage range, it may be
necessary to have a separate supply for the array core cells.
This design decision will have significant impact across the
whole methodology. Chip planning/integration, packaging,
libraries, and tools will have to be adapted to support
multiple supply domains.

Fig. 11: Statistical analysis of SRAM cells – Vdd1 versus Vdd2 data

Transistor level analysis also plays an important
role in the array verification methodology. For arrays, the
high level design begins will the RTL and the
implementation begins with the schematic design. There will
be long lead time before layout is completed. So it is very
important to have a methodology to provide accurate
parasitic and interconnect models at the schematic level. The
design methodology allows for a structured early floor-
planning with accurate wire load models or Steiner based
routing approximation to provide sufficient accuracy for
schematic transistor level analysis. Logic extraction from
array schematic is performed to build the test model, except
for the array core which is synthesized from the high level
RTL to reduce the model size. Then symbolic switch level
simulation is run on the schematic and verified against the
RTL as well as the test model. ATPG and marching patterns
are also run on the array schematic using fast circuit
simulator to verify the test patterns against the schematic.

IV.2.2. Transistor Level Timing
Static transistor level timing (TLT) was an integral

part of the design methodology, with all custom macros,
arrays, and even standard cell-based RLMs running through

timing analysis and models. To meet aggressive frequency
goals while satisfying area and power constraints, designers
need to be able to quickly determine critical paths and delays
in a circuit. Static timing at the transistor level using TLT
helped achieve these goals [11]. The TLT team for the
CELL project has improved the existing transistor-level
timing methodology [12] in these four areas: improved
timing margin calculation [13], local latch transparency
modeling [14], pulse waveform timing in TLT templates
[15], and improved method of timing model abstraction for
simultaneously switching signals [16].

TLT is a transistor-level sta

the tool, thereby providing comprehensive and consistent

tic timing tool that
extends

uses piecewise-linear waveforms (rather than
ramps)

IV.2.3. Modularity and Integration of Black Box

The architectural modularity of the CELL processor
also proj

V. CONCLUSION

In conclusio echniques, rules for
modulari

the capabilities of a Gate Level Static Timer to the
transistor level. These extensions include a state analysis
engine that is used to understand the timing behavior of
groups of transistors and build timing models for them, and a
fast circuit simulator [17] that is used for calculating
propagation delays/waveforms through these transistor
groups.

TLT
for timing accuracy and a modified version of

AWE/RICE [18, 19] to propagate these waveforms through
RC interconnect. TLT runs on flattened netlists from either
schematics or extracted physical data. In addition to
generating transistor level timing reports, it compiles a
timing model or rule that is used for static timing at higher
levels of the design hierarchy.

IP

ects into the physical domain, where all 8 SPEs are
instantiations of a single SPE design partition. To make this
work correctly, the interaction between the local SPE layout
and the global physical design structures had to be identical
at all 8 locations where each SPE is instantiated. The C4
footprint, power busses, clock sector buffers, pervasive
elements, and EIB components all had to be designed
upfront to fit into this scheme in a modular way. The other
extreme was taken with the integration of the high-speed IO
and Memory interfaces on the left and right side of CELL
[20]. These partitions were designed by a 3rd party vendor
as “black box” IP, and used all layout resources from the
silicon up to the C4 pins over their area. The only interaction
with the core/chip happened at the boundary where
predetermined power and signal pins were provided to cross
the interface.

n, special circuit t
ty and reuse, customized clocking structures, and

unique power and thermal management concepts were
applied to optimize the design [21]. Correct operation has
been observed in the lab on first pass silicon at frequencies
well over 4GHz as shown in figure 12.

0.7

0.9

1.1

1.3

1.5

0.7 0.9 1.1 1.3 1.5

VDD1 (peripheral)

VD
D

2
(c

el
ls

)

Fai

Pass

0.9 1 1.1 1.2
Supply Voltage

3

3.5

4

4.5

Fr
eq

ue
nc

y
[G

H
z]

Fmax

Hardware Performance Measurement (85°C)

Fig. 12: First pass hardware in the Lab

VI. ACKNOWLEDGMENTS

The authors gratefully acknowledge the many
contributions from the entire Sony-Toshiba-IBM team who
worked tirelessly side-by-side on the design of this
processor.

VII. REFERENCES

[1] D. Pham et al, “The Design and Implementation of a First-
Generation CELL Processor”, ISSCC 2005 Digest of Technical
Papers, Feb. 2005, pp. 184-185.
[2] B. Flachs et al, “The Microarchitecture of the Streaming
Processor for a CELL Processor”, ISSCC 2005 Digest of Technical
Papers, Feb. 2005, pp. 134-135.
[3] T. Asano et al, “A 4.8GHz Fully Pipelined Embedded SRAM in
the Streaming Processor of a CELL Processor”, ISSCC 2005 Digest
of Technical Papers, Feb. 2005, pp. 486-487.
[4] S. Clark et al, “IBM CELL Interconnect Unit, Bus and Memory
Controller”, Hot Chip’05, Aug. 2005, Paper #1.2
[5] F. Klass, C. Amir, A. Das, K. Aingaran, C. Truong, R. Wang, A.
Mehta, R. Heald, G. Yee, "A New Family of Semi-dynamic and
Dynamic Flip-Flops with Embedded Logic for High-Performance
Processors", IEEE J. Solid State Circuits, vol. 34, pp. 712-716
(1999).
[6] L. Sigal, J.D. Warnock, B.W. Curran, Y.H. Chan, P.J.
Camporese, M.D. Mayo, W.V. Huott, D.R. Knebel, C.T. Chuang,
J.P. Eckhardt, and P.T. Wu, “Circuit Design Techniques for the
High-Performance CMOS IBM S/390 Parallel Enterprise Server G4
Microprocessor”, IBM J. Res. & Dev. Vol 41 pp. 489-503 (1997).
[7] P. J. Restle, et al, “A Clock Distribution Method for
Microprocessors”, IEEE J. Solid-State Circuits, vol. 36, pp 792-
799, May 2001
[8] P. J. Restle, et al, “The Clock Distribution of the Power4
Microprocessor”, IEEE International Solid-State Circuits
Conference 2002 Digest of Technical Papers, vol. 45, pp 144-145
[9] K. Yazawa and M. Ishizuka, “Thermal Modeling with Transfer
Function for the Transient Chip-On-Substrate Problem”, Thermal
Science and Engineering, vol. 13, No. 1, Heat Transfer Society of
Japan, 2005, pp. 37–40

[10] Posluszny, S. et al. “Timing Closure by Design,” Proceedings
for the 37th Conference on Design Automation, vol.37, pp.712-717,
June 2000.
[11] Rao, V., J. Soreff, T. Brodnax, and R. Mains, “EinsTLT:
Transistor Level Timing with EinsTimer,” Proc. Of Int. Workshop
on Timing Issues (TAU), 1999.
[12] Lee, Sang Y, J. Warnock, E. Behnen, J. Soreff, V. Rao, and S.
Posluszny, “Improved Transistor-Level Timing Methodology for a
CELL Microprocessor,” ASPDAC 2006 (submitted for publication)
[13] Warnock, J.D., Erwin Behnen, Sang Y. Lee, and Jeffrey
Soreff, “Improved Method for Timing Margin Calculation,” IBM
Invention Publish, Feb. 2004.
[14] Behnen, E., Jeffrey Soreff, James D. Warnock, and Dieter
Wendel, “Method to Apply Latch Transparency Locally While
Avoiding It Globally During Timing,” Filed with U.S. Patent
Office, May 2004.
[15] Soreff, J., Vasant Rao, James D. Warnock, Sang Y. Lee, and
David Winston, “Pulse waveform timing in EinsTLT templates,”
Filed with U.S. Patent Office, May 2004.
[16] Warnock, J.D. and Jeffrey Soreff, “Improved Method of
Timing Model Abstraction for Circuits Potentially Simultaneously
Switching Internal Signals,” Filed with U.S. Patent Office, May
2004.
[17] Devgan, A. and R.A.Rohrer, “Adaptively controlled explicit
simulation,” IEEE Trans. Computer-Aided Design, vol. 13, pp.746-
762, June 1994.
[18] Pillage, L.T. and R.A. Rohrer, “Asymptotic waveform
evaluation for timing analysis,” IEEE Trans. Computer-Aided
Design, vol. 9, No. 4, pp. 352-366, April 1990.
[19] Ratzlaff, C.L, N. Gopal, and L.T. Pillage, “RICE: Rapid
interconnect circuit evaluator,” IEEE Trans. Computer-Aided
Design, vol. 13, No. 6, pp. 763-776, June 1994.
[20] K. Chang et al, “Clocking and Circuit Design for a Parallel I/O
on a First-Generation CELL Processor”, ISSCC’05 Paper #28.9
[21] Pham, D. et al. “Overview of the Architecture, Circuit Design,
and Physical Implementation of a First-Generation CELL
Processor,” JSSCC, October. 2005 Special issue (submitted for
publication).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

