
Fast Substrate Noise-Aware Floorplanning with
Preference Directed Graph for Mixed-Signal SOCs

Minsik Cho, Hongjoong Shin and David Z. Pan
Dept. of ECE, The University of Texas at Austin, Austin, TX 78712

thyeros@cerc.utexas.edu, unishin@cerc.utexas.edu, dpan@ece.utexas.edu

Abstract— In this paper, we introduce a novel substrate noise
estimation technique during early floorplanning, based on the
concept of Block Preference Directed Graph (BPDG) and the
classic Sequence Pair (SP) floorplan representation. Given a set of
analog and digital blocks, the BPDG is constructed based on their
inherent noise characteristics to capture their preferred relative
orders for substrate noise minimization. For each sequence pair
generated during floorplanning evaluation, we can measure its
violation against BPDG very efficiently. We observe that by
simply counting the number of violations obtained in this manner,
it correlates remarkably well with accurate but computation-
intensive substrate noise modeling. Thus, our BPDG-based model
has high fidelity to guide the substrate noise-aware floorplanning
and layout optimization, which become a growing concern
for mixed-signal/RF system on chips (SOC). Our experimental
results show that the proposed approach is over 60x faster than
conventional floorplanning with even very compact substrate
noise models. We also obtain less area and total substrate noise
than the conventional approach.

I. INTRODUCTION

Continuing demand for data and telecommunication appli-
cation is driving tighter integration of many heterogeneous
functions into a single system-on-chip. These components can
be pre-designed IP cores of different natures such as sensi-
tive front-end RF circuits, high-precision analog/mixed-signal
circuits, and high-performance digital circuits. Therefore, the
interference between these heterogeneous components has to
be considered during layout planning and optimization [1].
A key interference is the substrate noise caused by large
amount of switching activities in high speed digital cores,
to the analog/RF components. It may degrade the reliability
and performance of these sensitive analog/mixed-signal/RF
IPs [2]. The problem is becoming a growing concern due to
higher clock frequency, more accurate analog precision, deeper
technology scaling, and the integration of front-end RF with
digital blocks [3]–[5]. Many effects that corrupt RF signal such
as DC offset, oscillator pulling and pushing, local oscillator
leakage can be traced to the substrate-coupled noise [2].

Therefore, fast yet accurate evaluation and optimization of
substrate noise in physical design has become a crucial part of
mixed-signal SOC designs, in order to avoid expensive over-
design and excessive design iterations. A key step of such
layout optimization is the floorplanning stage [6]. Although

This work is supported in part by SRC under contract 2005-TJ-1321, IBM
Faculty Award, and equipment donations from Intel.

many works have been done in modeling and simulation of
substrate noise [2], [3], [5], [12]–[15], there is not much in the
literature on substrate noise optimization in early floorplanning
stage. Lin et al. [7] proposed an optimization technique that
incorporates substrate noise minimization into optimization
loops. This technique, however, requires detailed and expen-
sive circuit simulations to estimate the coupled substrate noise.
Blakiewicz et al. [8] proposed a floorplanning algorithm with
substrate noise as a cost function. A more scalable substrate
model with frequency-dependent sensitivity function of analog
and digital blocks is used, but still it requires significant
computational overhead to evaluate the substrate noise cost
function during floorplanning.

In this paper, we propose a novel concept of block prefer-
ence directed graph (BPDG) to overcome the modeling bot-
tleneck for substrate noise-aware floorplanning. Our BPDG-
based model has high fidelity compared with accurate but
much more expensive substrate noise modeling. Thus, it is
suitable to guide MS-SOC floorplanning. The major contribu-
tions of this paper include the following.

• We introduce the novel concept of block preference
directed graph (BPDG) to represent the preferred rela-
tive block locations in floorplanning. In BPDG, all the
preferences are decided to minimize the substrate noise,
and each preference is specified as a directed edge.

• We propose a fast substrate noise estimation algorithm
by combining BPDG and sequence pair. We simply
count how many preferences in BPDG are not held in
a sequence pair with simple bitwise-OR operation.

• We show that our approach has surprisingly high fidelity
to the substrate noise calculated by a most recent, accu-
rate substrate noise model [5].

• We propose a fast substrate noise-aware floorplanning al-
gorithm with BPDG and sequence pair. Our experimental
results show the proposed approach is significantly (at
least 60x) faster than a conventional simulation-based,
substrate noise-aware floorplanning.

The rest of the paper is organized as follows. In Section II,
preliminaries are described. In Section III, the concept of block
preference directed graph is introduced. The fast substrate
noise estimation algorithm is proposed in Section IV, and
the overall floorplanning flow is described in Section V.
Experimental results are discussed in Section VI. Section VII
concludes this paper with future work.

Distance(x)

RDA

SOURCE SENSOR

Backplane

P+ P+

R RAD

(1/G) AD (1/G)

(1/G)DA

Fig. 1. Macromodel for the substrate

II. PRELIMINARIES

A. Sequence Pair and Block Alignment

A sequence pair [9] is a pair of sequences of n elements
representing a list of n blocks. Two sequences specify the
geometric relations between each pair of blocks. For example,
(..A..B.., ..A..B..) means that a block A is to the left of a block
B, and (..B..A.., ..A..B..) implies that A is below B. A sequence
pair can be translated into a floorplan by horizontal and
vertical constraint graph [9]. Conditions for block alignments
in sequence pair are studied in [10]. H/V alignment constraints
and abutting constraint between blocks are introduced and
applied for performance-aware floorplanning.

B. Substrate Noise Model

Several techniques have been proposed to model and ana-
lyze substrate noise accurately in integrated circuit level [11]–
[13]. However, these techniques require the detailed im-
plementation information in transistors and time-intensive
transistor-level simulation. In this paper, we use compact
substrate coupling model [5] to evaluate an instance of floor-
plan from conventional approach, and to verify the final
floorplan. The model in [5] is known to be highly scalable
with dimensions and separations.

A two-port lumped resistor network, modeling substrate is
illustrated in Fig. 1. The resistance RDA, models the coupling
between two blocks, and RA and RD model the coupling from
the blocks to the backplane. The resistances, RDA, RA and
RD can be derived from the scalable macromodel, which is
based on Z-parameters.

Z =
[

Z11 Z12

Z21 Z22

]
=

1
�

[
GD + GDA GDA

GDA GA + GDA

]
(1)

where � = GAGDA + GDGDA + GAGD and any Zij can
be calculated with equations in [5], [14], [15].

The coupling gain (propagation gain) of the substrate can be
calculated from the value of resistors in the two-port lumped
network shown in Fig. 1. The coupling gain of i-th digital
block to j-th analog block, CGi,j is given by:

CGi,j =
RA

RA + RDA
=

GDA

GDA + GA
=

Z12

Z22
(2)

Although CGi,j exhibits frequency-dependent characteristics,
it is constant under a few gigahertz [4]. In this paper,
we assume that the bands of interest are within this limit.
The quantity of the substrate noise can be estimated using
frequency-dependent characteristics of noise source and sensor
block, and a simple analytical formula based on CGi,j . The

substrate noise of j-th analog block from switching of i-th
digital block, Ni,j can be approximated by [8]:

Ni,j = (CGi,j) ·
√∫ ∞

0

(Si(f) · Hj(f))2df (3)

where Si(f) and Hj(f) are Power Spectral Density (PSD) of
noise source and transfer function of noise sensor respectively.
Also, the total noise from all digital blocks is:

Ntotal =
∑

i

∑
j

Ni,j (4)

As shown in Eqn. (3), CGi,j is scaled by average power of
noise with regard to the frequency. The frequency-dependent
noise generated by a digital block, Si(f) is shaped by the
transfer function of the noise sensor. The integration of the
shaped power of noise represents the quantity of noise injected
into analog block, when CGi,j is equal to 1. We use a
piecewise-linear approximation of PSD to estimate Si(f), and
Power/Ground bounce limits to determine its parameters.

III. BPDG: BLOCK PREFERENCE DIRECTED GRAPH

The substrate noise model in Section II-B is one of the most
compact models with high scalability and accuracy. However,
it is still computationally expensive to perform a substrate
noise estimation even with such an efficient model during
simulated annealing-based floorplanning, because every noise
estimation after a movement requires the accurate location
of every block (substrate noise is exponentially sensitive to
geometric distance [5], [14], [15]), whereas area and wire-
length can be calculated approximately. Furthermore, comput-
ing noise itself with Eqn. (2, 3) is not computationally trivial.

For fast substrate noise estimation, a new concept of block
preference directed graph, BPDG is introduced and described
in this section. BPDG represents preferred relative locations
of blocks to guide substrate noise-aware floorplanning. BPDG
construction consists of three steps.

1) A table of substrate noises (Ni,j) between all analog and
digital blocks is constructed.

2) Analog block orderings and digital block orderings are
created separately with the substrate noise table.

3) BPDG is constructed by finding common orders from
block orderings.

The following subsections illustrate each step with detailed
examples in Table I and Fig. 2, 3, 4.

A. Substrate Noise Table Construction

Since substrate noise is heavily related to the distance
between blocks, we assume that the nominal distance is fixed
to normalize the effect of distance. With such fixed distance,
the substrate noise between a digital block and an analog
block purely depends on frequency coupling and geometric
properties like area and perimeter [5], [14], [15]. Under such
condition, for each digital block Di and analog block Aj , a
substrate noise on Aj due to Di, Ni,j can be computed from
Eqn. (3). Table I shows an example of substrate noise table of
between digital blocks (D1, D2, D3, D4, D5, D6) and analog
blocks (A1, A2, A3).

TABLE I

SUBSTRATE NOISE TABLE

D1 D2 D3 D4 D5 D6

A1 5 2 6 3 10 1
A2 2 1 3 10 8 5
A3 3 8 7 11 9 12

B. Analog Block Ordering

Based on the substrate noise table, analog blocks can be
sorted for each digital block by the descending order of
substrate noise. Consider the example in Table I. Analog block
A1, A3 and A2 can be ordered by the substrate noise from
D1, as N1,1 = 5 > N1,3 = 3 > N1,2 = 2. The other five
orderings can be obtained in the same manner, as shown in
Fig. 2. Basically, this ordering pushes more noise-sensitive
analog blocks to the head, and less sensitive ones to the tail
of block orderings.

D1 : A1 ← A3 ← A2 , D2 : A3 ← A1 ← A2

D3 : A3 ← A1 ← A2 , D4 : A3 ← A2 ← A1

D5 : A1 ← A3 ← A2 , D6 : A3 ← A2 ← A1

Fig. 2. Analog block orderings

C. Digital Block Ordering

In similar way, digital blocks can be sorted for each analog
block by the ascending order of substrate noise. Again con-
sidering the example in Table I, digital block D6, D2, D4,
D1, D3 and D5 can be ordered such that the substrate noise
on A1 is increasing. All digital block orderings are shown in
Fig. 3. This pushes less aggressive blocks to the head and
more aggressive blocks to the tail of block orderings.

A1 : D6 ← D2 ← D4 ← D1 ← D3 ← D5

A2 : D2 ← D1 ← D3 ← D6 ← D5 ← D4

A3 : D1 ← D3 ← D2 ← D5 ← D4 ← D6

Fig. 3. Digital block orderings

D. BPDG Construction

The two key ideas behind BPDG construction are: first, to
find common block order patterns in order to minimize the
substrate noise; second, to make less aggressive digital blocks
and less sensitive analog blocks interfaced. An analog BPDG
and a digital BPDG are constructed with analog and digital
block orderings by Algorithm 1. The reason to create a virtual
vertex in Algorithm 1 is to force analog blocks isolated from
digital blocks, which is common in real mixed-signal design.

Consider the final BPDG in Fig. 4 as an example. Since
A3 is before A2 for all analog block orderings in Fig. 2,
vertices A3 and A2 are inserted into Ga (Analog BPDG), and
connected with a directed edge. Again, vertices D1 and D3

Algorithm 1 BPDG Construction
Input: Analog, Digital block orderings Oa and Od

1: Analog BPDG Ga ← φ, Digital BPDG Gd ← φ
2: for each analog block Ai, Aj , i �=j do
3: if Ai is before Aj in all Oa then
4: Add a directed edge from Aj to Ai to Ga

5: end if
6: end for
7: for each digital block Di, Dj , i �=j do
8: if Di is before Dj in all Od then
9: Add a directed edge from Dj to Di to Gd

10: end if
11: end for
12: Add a virtual vertex D0 for Ga to Gd

13: Add directed edges from all root vertices to D0

Output: Gd

are inserted into Gd (Digital BPDG) with a directed edge from
D3 to D1, as D1 is before D3 for all digital block orderings
in Fig. 3. Note that A1 does not have any edge, as there is
no common order regarding A1 in Fig. 2, and D6 only has an
edge to D0 for analog-digital separation. Lastly, Ga and Gd

are merged via virtual vertex D0.

D2 D4

D6

D1 D3 D5

Origin
(0,0)

D0

A3 A2

A1

Analog BDPG

Digital BDPG

Fig. 4. Block preference directed graph (BPDG)

IV. SUBSTRATE NOISE ESTIMATION WITH BPDG

The BPDG in Section III can be used to estimate substrate
noise quickly by comparing it against a sequence pair which
is one of the most popular floorplan representations. In this
section, a theorem which returns the number of violations
against preferences in a BPDG from a sequence pair is
presented, and its high fidelity to substrate noise is shown.
The number of violations is highly correlated to substrate
noise quantity; intuitively, more violations indicate more noise,
because each directed edge from a block Ba to a block Bb

in the BPDG means that Bb is preferred to be closer to the
origin (left-bottom corner of floorplan) than Ba to reduce the
substrate noise.

A. Sequence Pair with BPDG

In [10], the concept of strictly ahead is defined for block
alignment in a floorplanning with sequence pair. When there
is no block between Ba and Bb in a floorplan, Ba is strictly

ahead of Bb. Fig. 5(a) shows a floorplan with several blocks.
In this example, Ba is strictly ahead of B1, B2, B3 and B4.
In fact, strictly ahead is a necessary condition for two blocks
to be abutted (only B1 and B3 are abutted to Ba). In the
following, we introduce several definitions based on strictly
ahead for easier explanation of this section.

DEFINITION α. Given a block Ba and a sequence pair (P, N),
all the blocks which are both strictly ahead of Ba and below
Ba form a strictly below set of Ba.

DEFINITION β . Given a block Ba and a sequence pair (P, N),
all the blocks which are both strictly ahead of Ba and to the
left of Ba form a strictly left set of Ba.

DEFINITION γ . Given a block Ba and a sequence pair (P, N),
any block in a strictly below/left set of Ba and abutting to Ba

is a reference block.

In Fig. 5(a), B2, B3 and B4 are strictly below set of Ba,
because they are strictly ahead of Ba as well as below Ba.
Also, B3 is a reference block of Ba. One intuitive property of
the reference block is stated in Lemma α referring to [10].

Lemma α: If a block Ba has a strictly below/left set S, there
must exist some reference block Bx in S under a completely
packed floorplan.

Based on Lemma α, the relative locations of two blocks
can be determined. Consider a specific floorplan in Fig. 5(b)
where Ba is to the left of Bb, and Bx is a reference block of
Ba. It can be easily proved that if a block such as Bx exists
below Bb, it is guaranteed that Ba has a shorter distance to
the origin (0,0) than Bb. This key idea to compare the relative
location of two blocks conservatively with a sequence pair
is presented as Theorem 1 by extending Theorem 1 and 3
in [10]. Note that the conditions 1) and 2) of Theorem 1 are
corresponding to Fig. 5(b) and (c) respectively.

Theorem 1: Let Sb be a strictly below set of Ba and Sl a
strictly left set of Ba. A block Ba is guaranteed to have shorter
distance to the left bottom corner than a block Bb under a
completely packed floorplan, if either of following conditions
is satisfied.

1) for any block Bs in Sb, a sequence pair (P,N) is
(..BaX1BbX2Bs.., ..BsY1Ba..Bb..).

2) for any block Bs in Sl, a sequence pair (P,N) is
(..BsX3BbX4Ba.., ..BsY2Ba..Bb..).

Origin

Ba

Bb

B1

B2
B3B4

(a)

Origin

Ba

Bb

Bx
Abutting

(b)

Origin

Ba

Bb

Bx

Abutting

(c)

Fig. 5. Floorplan examples

Thus, when a sequence pair (P,N) and a BPDG G are
given, the preferred relative block location (an edge) in G can
be examined with Theorem 1 to see if such preference is held
in (P,N). Theorem 1 can be further simplified into Theorem 2
with the longest common string (LCS) search by narrowing
down the size of subsequences to scan.

Theorem 2: A block Ba is guaranteed to have shorter distance
to the left-bottom corner than a block Bb under a completely
packed floorplan, if either of following conditions is satisfied.

1) there is no block Bs satisfying LCS(X1, Y1)=φ in a se-
quence pair (P,N)=(..BaX1Bs..Bb.., ..BsY1Ba..Bb..).

2) there is no block Bs satisfying LCS(X2, Y2)=φ in a se-
quence pair (P,N)=(..Bb..BsX2Ba.., ..BsY2Ba..Bb..).

The following sequence pairs show examples with the BPDG
in Fig. 4. Note that the blocks one need to pay attention to are
marked with *, and we highlight one violation, even though
there can be more.

• (D0D6D1D
∗
2D3D

∗
4D5, D∗

4D0D6D1D
∗
2D3D5)

This case has D2 ← D4 violation, because D2 is after
D4 in the second sequence which does not match either
one of required sequence pair patterns in Theorem 1.

• (D4D5D
∗
1D2D6D

∗
0D∗

3 , D∗
0D5D4D

∗
1D2D6D

∗
3)

This case has D1 ← D3 violation. D0 is below D1 and
LCS(D2D6, D5D4) = φ But, D0 is before D3 in the
first sequence which violates the required sequence pair
pattern in condition 1) of Theorem 1.

The significance of Theorem 1 and 2 is that a geometric
distance from the origin to any two blocks in a sequence
pair can be compared conservatively without other geometric
information. Thus, whether an edge (preference) in a BPDG is
held in a sequence pair can be checked extremely efficiently.
Note that in a real implementation, bitwise-OR can be used
instead of LCS computation, since we are only interested in
whether there is a common sequence.

B. Fidelity of BPDG

In order to measure the fidelity of BPDG-based model
for substrate noise estimation, ami33 from MCNC bench-
marks [16] was simulated with carefully generated noise
characteristics. Fig. 6 shows the normalized substrate noise
on all analog blocks by the number of violations counted by
Theorem 2 with different total number of violations. It shows
that normalized substrate noise increases near linearly as the

0 10 20 30 40 50 60 70
1

1.5

2

2.5

3

3.5

4

4.5

5

Number of Violations

N
or

m
al

iz
ed

 S
ub

st
ra

te
 N

oi
se

Y = 0.051 X + 0.56
Max Error : 6%

(a) Total 76 violations

0 20 40 60 80 100
1

2

3

4

5

6

7

Number of Violations

N
or

m
al

iz
ed

 S
ub

st
ra

te
 N

oi
se

Y = 0.077 X − 1.5
Max Error : 9%

(b) Total 100 violations

Fig. 6. Number of violations vs. Substrate noise

TABLE II

EXPERIMENTAL RESULTS

Name Algorithm Costa Input Area White Normalized CPU Overhead (%)
Description Function (node) (mm2) Space(%) Noise (sec) CPU Area

ami33 1.19 3.2 821.1 0.8 0.0 0.0
parq Pure Parquet A

Ar
ami49 36.7 3.6 1629.9 2.6 0.0 0.0

with Sequence Pair n75 42.04 4.0 3559.9 8.6 0.0 0.0
n100 18.86 5.1 4697.5 24.6 0.0 0.0

ami33 1.24 6.9 121.2 0.9 15.5 3.8
bpdgb BPDG 0.6 A

Ar
+ 0.4 NV

NVr
ami49 37.9 7.1 72.2 2.7 6.6 3.4

with Sequence Pair n75 43.12 6.6 173.1 9.2 7.1 2.6
n100 19.22 6.9 202.5 26.4 7.1 1.9

ami33 1.23 6.1 143.9 73.0 8782.5 2.8
modl Substrate Noise Model 0.6 A

Ar
+ 0.4 SN

SNr
ami49 38.4 8.4 90.8 158.3 6103.3 4.6

with Sequence Pair n75 44.08 9.1 322.4 666.9 7692.5 4.9
n100 19.94 11.1 696.1 1956.3 7844.1 5.8

a A, NV and SN denote total area, the number of violations and total substrate noise on analog blocks respectively. Ar , NVr and
SNr are the reference values of A, NV and SN respectively.

b for bpdg, each side of the virtual analog block is inflated by 0.6% as a whitespace(guard ring) insertion.

number of violations increases. Notice that the range over
50% of maximum violations shows high fidelity with less than
6% error in Fig. 6(a), and 9% in Fig. 6(b). Since the typical
number of violations during simulated annealing falls in this
high fidelity range, the number of violations in sequence pair
is a good indicator of substrate noise. Thus, by comparing
BPDG of Section III against sequence pair, substrate noise
can be estimated very fast with high fidelity.

• Our approach estimates substrate noise without accurate
geometric information such as x and y coordinates. As
a result, all the efforts to compute the accurate locations
of all blocks can be saved.

• Our approach needs only integer and bitwise-OR op-
erations whereas model-based noise estimation requires
floating point operations and transcendental functions like
exp(x).

V. FAST SUBSTRATE NOISE-AWARE FLOORPLANNING

Our floorplanning algorithm takes advantage of the BPDG-
based fast substrate noise estimation, efficiently examining
discrepancy between BDPG in Section III and sequence pair in
Section IV. Also, using block inflation, we insert whitespace
around analog blocks as a guard ring. Note that our white
space allocation is done as a preprocessing to minimize area
overhead. The overall algorithm is described in Algorithm 2.

VI. EXPERIMENTAL RESULTS

We implemented the proposed algorithm in C++ by mod-
ifying Parquet [17] which is a simulated annealing-based
floorplanning package available in [18]. In order to compare
our approach (bpdg in Table II) with other approaches, we also
implemented the conventional model-based, substrate noise-
aware floorplanning algorithm (modl in Table II). After every
movement inside the simulated annealing loop, to estimate cur-
rent floorplan instance’s substrate noise on the analog blocks,
the number of violations by Theorem 2 was counted for bpdg,
whereas substrate noise was computed for modl based on
the substrate noise model, i.e., Eqn. (4) in Section II-B. The

Algorithm 2 Fast Substrate Noise-Aware Floorplanning
Input: Analog BPDG Ag, Digital BPDG Dg

1: Do floorplanning with analog blocks with Ag
2: Inflate the analog block floorplan
3: Make the analog floorplan as a virtual block Bv

4: Do floorplanning with digital blocks and Bv with Dg
Output: Final floorplan

cost functions we used for each algorithm are summarized
in Table II. Note that we disabled wirelength optimization,
since real implementation of mixed-signal SOCs has sparse
interconnection between analog blocks and digital blocks,
which is not well reflected in MCNC benchmarks. However,
our approach can be readily extended to include wirelength
optimization, maintaining high computational efficiency.

All algorithms were tested on a Pentium4 Linux machines
with MCNC [16] benchmarks (ami33, ami49) and two ran-
domly generated larger benchmarks (n75 with 75 blocks, n100
with 100 blocks). About 30% of the blocks in each benchmark
were chosen as analog blocks, and noise characteristics of all
the blocks were carefully generated. All process dependent
parameters were the same as in [5], [14] and [15].

Table II shows experimental results for all benchmarks with
three algorithms. Each number in the table is generated by
taking the average of numbers obtained over 250 floorplans.
The simulated annealing of each floorplanning is scheduled by
Parquet, and stopped after the same number of movements for
each benchmark. The final noise quantities for all algorithms
were computed based on Eqn. (4) for fair comparison.

The last two columns show the overhead of each algorithm
in terms of cpu time and area with respect to parq. From
the table, parq shows the best area and cpu time (thus,
0% overhead), but the worst noise for all benchmarks as
expected. The cpu time of bpdg is significantly smaller than
that of modl for all benchmarks; bpdg is approximately 60-
80 times faster than modl. The area overhead of bpdg is
slightly smaller for the three larger benchmarks as well than

(a) With proposed approach(bpdg)

0 1000 2000 3000 4000 5000 6000 7000
0

1000

2000

3000

4000

5000

6000

7000

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
16

17

18

19

20

21

22

23

24

25

26

27 28

29

30

31

32

33

34

35 36

37

38

39

40

41

42

43

44
45

46

47

48

49

ami49(modl)

um

um

Area: 36.66 um2

WhiteSpace: 3.42%

Aspect Ratio: 0.85

Time: 152.8 sec

(b) With model-based simulation approach(modl)

Fig. 7. Result of packing ami49

modl. Lastly bpdg shows less total substrate noise than modl.
The reason why the proposed algorithm overall shows both
smaller area and less substrate noise is that whitespace is more
efficiently utilized. By making an analog floorplan inflated
as a preprocessing step as in Section V, the substrate noise
becomes less in the beginning of annealing, and this allows
the simulated annealing engine to optimize the area further
without increasing substrate noise. An analogy of this kind of
effect can be found in congestion-aware placement [19].

VII. CONCLUSION

In order to cope with significant substrate noise impact
on analog circuits from digital circuits, we propose substrate
noise-aware floorplanning with fast substrate noise estimation
powered by block preference directed graph (BPDG) and
sequence pair. Compared with Parquet [17], the proposed
approach has on average only 9% cpu time overhead, whereas
naive model-based simulation approach shows over 6000%
overhead. Also, the proposed approach shows smaller area
overhead due to the efficient utilization of whitespace.

Since BPDG is a general concept for fast cost evaluation,
it will be extend to deal with temperature or performance
estimation in the future.

VIII. ACKNOWLEDGEMENT

The authors would like to thank Prof. Karti Mayaram from
Oregon State Univ. and Prof. Ranjit Gharpurey from the Univ.
of Texas at Austin for helpful discussions.

REFERENCES

[1] A. Nardi, H. Zeng, J. L. Garrett, L. Daniel, and A. L. S-Vincentelli, “A
Methodology for the computation of an upper bound on noise current
spectrum of CMOS swichting activity,” in Proc. Int. Conf. on Computer
Aided Design, 2003, pp. 778–785.

[2] A. Koukab, K. Banerjee, and M. Declercq, “Modeling Techniques and
Verification Methdologies for Substrate Coupling Effects in Mixed-
signal System-on-Chip designs,” IEEE Trans. on Computer-Aided De-
sign of Integrated Circuits and Systems, vol. 23, no. 6, Jun 2004.

[3] M. V. Heijingen, M. Badarouglu, S. Donnay, G. G. E. Gielen, and
H. J. D. Man, “Substrate Noise Generation in Complex Digital systems:
efficient modeling and simulation methodology and experiemental ver-
ification,” IEEE J. Solid-State Circuits, vol. 37, Aug 2002.

[4] H. Lan, Z. Yu, and R. W. Dutton, “A CAD-oriented Modeling Ap-
proach of frequency-dependent behavior of Substrate Noise Coupling
for Mixed-Signal IC Design,” in Proc. Int. Symp. on Quality Electronic
Design, Mar 2003, pp. 195–200.

[5] B. Owens, S. Adluri, P. Birrer, R. Shreeve, S. K. Arunachalam, and
K. Mayaram, “Simulation and Measurement of Supply and Substrate
Noise in Mixed-Signal ICs,” IEEE J. Solid-State Circuits, vol. 40, no. 2,
Feb 2005.

[6] T. Blalack, Y. Leclercq, and C. P. Yue, “On-chip RF isolation tech-
niques,” in Proc. IEEE BCTM., 2002, pp. 205–211.

[7] C. Lin and D. Leenaerts, “A New Efficient Method Substrate-Aware
Device-Level Placement,” in Proc. Asia and South Pacific Design
Automation Conf., 2000, pp. 533–536.

[8] G. Blakiewicz, M. Jeske, M. Chrzanowska-Jeske, and J. S. Zhang,
“Substrate Noise Modeling in Early Floorplanning of Mixed-Signal
SOCs,” in Proc. Asia and South Pacific Design Automation Conf., Jan
2005, pp. 819–823.

[9] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani, “VLSI Module
Placement Based on Rectangle-Packing by the Sequence-Pair,” vol. 15,
Dec 1996.

[10] X. Tang and D. Wong, “Floorplanning with Alignment and Performance
Constraints,” in Proc. Design Automation Conf., Jun 2002.

[11] W. K. Chu, N. Verghese, K. S. H. Cho, H. Tsujikawa, S. Hirano,
S. Doushoh, M. Nagata, A. Iwata, and T. Ohmoto, “A Substrate Noise
Analysis Methodology for Large-Scale Mixed-Signal ICs,” in Proc.
IEEE Custom Integrated Circuits Conf., 2003.

[12] N. K. Verghese and J. J. Allstot, “Computer-aided design considerations
in Mixed-signal coupling in RF integration circuits,” IEEE J. Solid-State
Circuits, vol. 33, Mar 1998.

[13] J. P. Costa, M. Chou, and L. M. Silveria, “Efficient techniques for
accurate modeling and simulation of substrate coupling in Mixed-signal
ICs,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems, vol. 18, no. 5, pp. 597–607, May 1999.

[14] D. Ozis, T. Fiez, and K. Mayaram, “An Efficient Modeling Approach
for Substrate Noise Coupling Analysis,” in Proc. IEEE Int. Symp. on
Circuits and Systems, 2002.

[15] ——, “Comprehensive geometry-dependent macromodel for substrate
noise coupling in heavily doped cmos processes,” in Proc. IEEE Custom
Integrated Circuits Conf., 2002.

[16] http://www.cse.ucsc.edu/research/surf/GSRC/MCNC.
[17] S. N. Adya and I. L. Markov, “Fixed-outline Floorplanning : Enabling

Hierarchical Design,” IEEE Trans. on Very Large Scale Integration
(VLSI) Systems, vol. 11, pp. 120–1135, Dec 2003.

[18] http://vlsicad.eecs.umich.edu/BK/parquet.
[19] U. Brenner and A. Rohe, “An effective congestion driven placemnet

framework,” in Proc. Int. Symp. on Physical Design, 2002, pp. 6–11.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

