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Abstract— Routing tree construction is a fundamental prob-
lem in modern VLSI design. In this paper we propose CDC-
Tree, an Obstacle-Avoiding Rectilinear Steiner Minimum Tree
(OARSMT) heuristic algorithm to construct an OARSMT. CDC-
Tree is based on the current driven circuit (CDC) model mapped
from an escape graph. The circuit structure comes from the
topology of the escape graph, with each edge replaced by a
resistor indicating the wirelength of that edge. By performing
DC analysis on the circuit and selecting the edges according to
the current distribution to construct an OARSMT, the wirelength
of the resulting tree is short. The algorithm has been implemented
and tested on cases of different scales and with different shapes of
obstacles. Experiments show that CDCTree can achieve shorter
wirelength than the existing best algorithm, An-OARSMan, when
the terminal number of a net is less than 50.

I. INTRODUCTION

Routing tree construction is one of the major tasks in the
routing phase. When wirelength is of interest, it is in essence
an RSMT (Rectilinear Steiner Minimum Tree) construction
problem on a given terminal set. In practical full-chip routing
or detailed routing applications, we consider macro cells, IP
blocks, and pre-routed nets as obstacles. Therefore, power-
ful algorithms of OARSMT (Obstacle-Avoiding Rectilinear
Steiner Minimum Tree) construction are required to get short
wirelength.

The RMST problem has been proved to be NP-complete [1].
However, the OARSMT problem is even more complicated
and no polynomial-time algorithms have been proposed to
solve it precisely. Maze algorithm was proposed in [2] and
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several improvements on searching efficiency were made in
[3]-[6] later.

The method of line search routing was introduced in [7] and
[8]. However, these algorithms are only suitable for small-
scale problems. Most existing OARSMT algorithms use the
multi-terminal variant of the maze algorithm, which incurs the
same space demand as that of the two-terminal variant with
a result far from the optimal. [9] proposed an algorithm to
construct optimal three-terminal or four-terminal OARSMT.
Then, G3S, G4S, and B3S heuristics were proposed for the
cases with less than twenty terminals. [10] provided an exact
algorithm to find an obstacle-avoiding Euclidean Steiner tree
with less than 150 terminals. [11] introduced an O(mn) two-
step heuristic of OARSMT, in which m is the number of
obstacles and n is the number of terminals. The two-step
heuristic works well when the terminal number is less than
seven and the obstacles are convex. The most recent works are
FORst [12] and An-OARSMan [13]. FORst can tackle large
scale problems efficiently. An-OARSMan, based on the track
graph put forward in [14], can achieve shorter wirelength than
FORst when the terminal number is less than 100.

In practice, most nets in circuits are in common scale. If
we research on powerful OARSMT algorithms to get short
wirelength for such nets, we can have more opportunities to
get better routing results. Meanwhile, there is still much room
to improve the wirelength performance.

The main contribution of this paper is CDCTree, a heuristic
algorithm of OARSMT construction based on a current driven
circuit (CDC) model. The idea of CDCTree is different from
those of existing algorithms. It maps the edges of escape graph
into resistors, and adds a current source at each terminal.
Then it makes use of Coulomb’s Law, which indicates the
repellency of currents, to construct an RSMT. Experimental
results show that CDCTree can achieve shorter wirelength than
An-OARSMan when the terminal number is less than 50. In
addition, CDCTree can route among both convex and concave



Fig. 1. Current distribution for a three-terminal current driven circuit model

polygon obstacles.
The rest of the paper is organized as follows: In Section

II, we discuss how Coulomb’s Law can be applied to the
OARSMT construction. In Section III, the detailed procedure
of tree construction based on CDC model is described in
detail. Section IV shows the experimental results and some
discussions. Conclusions and remarks are given in Section V.

II. COULOMB’S LAW IN OARSMT CONSTRUCTION

The foundation of our CDCTree algorithm is different from
the existing algorithms. In order to clearly describe the idea,
we fi rst describe how Coulomb’s Law can be applied to the
OARSMT problem.

Coulomb’s Law indicates that charges of the same kind
(negative or positive) are repellent. [15] fi rst employed this
law to solve planning problems. But we notice that this law
can also be used in optimization problems. Basically speaking,
electrical currents are composed of electrons, all of which are
negatively charged. According to Coulomb’s Law, the currents
repel from each other. Here, we introduce this idea into the
tree construction problem.

If we map an escape graph [9] into a circuit and inject
current at each terminal, the current distribution of this current
driven circuit can be obtained by performing DC analysis.
Then the edges with the minimum currents are selected to
construct the Steiner tree. The total length of the tree thus
constructed should be short because the currents along the
edges which are close to all the terminals are signifi cantly
repelled by current injections at those terminals. We observe
that RSMT is usually constructed by the edges close to all the
terminals. Edges far from some of the terminals are seldomly
selected. Therefore, the tree constructed by the edges with
minimum current has a short wirelength.

Figure 1 illustrates the current distribution in a three-
terminal current driven circuit model. Currents are injected
at the three vertices marked in black. Each edge represents
a resistor with a given value. The RMST is composed by
the edges in bold black lines. It can be easily verifi ed that
the currents flowing along the edges of the RSMT are small.
Note that not all the edges with minimum currents are selected
because of the path selection rules, which is discussed in the
next section.

Fig. 2. An example of topology mapping from (a) escape graph to (b) circuit
structure

III. THE CDCTREE ALGORITHM

CDCTree algorithm is composed of four steps: topology
mapping, resistor selection, circuit simulation, and path se-
lection. The four steps are discussed in detail below.

A. Topology Mapping

CDCTree algorithm is based upon the escape graph [9],
which enables us to get short wirelength. This step deals with
the mapping from escape graph to circuit structure.

We fi rst place a resistor at each edge of the escape graph,
the value of which is to be decided in the next step, i.e. resistor
selection. Next, we add a current source at each terminal. The
value of the current source can be arbitrarily chosen as it does
not influence the relative distribution of the currents. The edge
with larger current always has larger current regardless of the
current source value. In our experiments we set the current
sources to be 5A.

Finally, to let the circuit function correctly, we have to
decide how to connect the circuit to the ground. One method
is to extend the escape graph to infi nite size. Then the nodes at
infi nite are automatically connected to ground. However, this
method requires a large memory as well as high computation
cost because we have to calculate the currents at each edge
while the total edge number is infi nite. Therefore, this method
is impractical.

An alternative way is to connect the periphery nodes of
the circuit to ground. Though much simplifi ed, this method
brings about another problem. Unlike the infi nite structure,
the fi nite one influences the current distribution of the circuit
signifi cantly. If we let the periphery nodes connect to the
ground via a resistor, the side effects can be alleviated to some
extent. In the fourth step (path selection), further techniques
are employed to compensate for the side effects.

An example of topology mapping from the escape graph to
the circuit structure is given in Figure 2. The terminals and
edges in (a) are mapped into current sources and resistors in
(b), respectively.

B. Resistor Selection

There are three different types of resistors in our circuit
model. The fi rst type, GND resistors, are used to connect
the periphery nodes of the circuit to the ground. The second
type, EDGE resistors, refer to the resistors on the edges of



the graph except for the obstacle boundaries. The last type,
OBST resistors, are the resistors on the edges of the obstacle
boundaries.

1) GND resistors: GND resistors are used to provide paths
for currents to flow to the ground. In our experiments, we set
GND resistors to be a fi xed small value, 0.1.

2) EDGE resistors: According to Ohm’s Law, the larger the
resistor, the smaller the current flowing through it. Since we
choose edges based on minimum currents, we want less current
to flow through paths with larger wirelength. Therefore, the
longer the edge, the smaller the EDGE resistor should be.
A mapping function f(x) should thus be decided by which
EDGE resistor R can be calculated as

R = f(L) (1)

where L is the length of the edge. The slope of f(x) cannot be
too large, otherwise it may signifi cantly influence the current
distribution. This causes the resulting tree to be constructed
simply by the shortest edges without considering the topology
of the tree. On the other hand, the slope can not be too small,
which leads to neglecting the impact of the edge length. After
experiments, we select the following function.

f(x) = K − ln(x) (2)

where K must be large enough to guarantee f(x) to be positive
in the range of x, i.e. edge lengths. In our experiments, the
edge lengths are set to be between 100 and 10,000, so we
choose K to be 10. The mapping function turns out to be

R = 10 − ln(L) (3)

In general cases, K should be larger than the logarithm of the
maximum wirelength to keep the resistor value positive.

3) OBST Resistors: The existence of obstacles to some
extent destroys the characteristics of the original circuit model.
From our experiments, we fi nd out that currents tend to gather
at the edges of obstacles, which can be called as Current
Crowding Effect (CCE). To compensate for CCE, the resistors
on obstacle edges should be set larger. In our experiments, we
simply add a fi xed value 10 to the value calculated from (3).

Following the four steps, we construct a current driven
circuit model.

C. Circuit Simulation

The current through each edge can be solved by using NA
(Nodal Analysis) method [16]. The main idea of this method is
based upon KCL (Kirchhoff’s Current Law), which states that
the algebraic sum of the currents flowing into each node of the
circuit must be zero. Set the voltages at the nodes as variables
and the current through each edge can be expressed by those
variables according to Ohm’s Law. Then, apply KCL to get
a set of linear equations. These equations can be written in
matrix form as Ax=b, where A is a positive defi nite diagonally
dominant sparse matrix and b is the port incidence matrix [16].
There are numerous effi cient algorithms to solve it, such as
ICCG (Incomplete Cholesky-conjugate Gradient method) [17],
etc. For convenience’s sake, we simply use Gaussian-Seidel
iteration method in our experiments to verify the theory of
CDCTree.

D. Path Selection

This step is of great importance as it directly decides
the quality of the tree. The step is composed of three sub-
functions: preprocess, growth, and reduction. The overall
procedure of the path selection is shown in Algorithm 1.
It fi rst moves inside the terminals at periphery to alleviate
the defi ciency brought by GND resistors (in sub-function
preprocess). Then, it decides what to do in each iteration
according to the situation of surrounding terminals, whether
reduction or growth.

The key point for this algorithm is to select the edges with
the minimum currents. This is also the goal of sub-function
growth. However, as we mentioned above, there are other
factors that influence the current distribution. Some strategies
must be employed to make up for the disturbance. The fi rst
and second sub-functions, preprocess and reduction, are put
forward for this purpose.

This algorithm cannot guarantee that all the terminals can
be connected. Therefore, a maximum iteration number must
be set. If the above algorithm does not converge successfully
after a certain number of iterations, it is forced to exit. The
remaining unconnected terminals are connected using Maze
Algorithm. This situation happens when there are minimum
current loops in the circuit. In our experiments, we observe
the unconnected terminal number is always less than three.

Algorithm 1 Overall Procedure of Path Selection
INPUT: terminal number, terminal list and current distri-
bution of the escape graph;
OUTPUT: OARSMT;
initialization: active number = terminal number;
initialization: active list = terminal list;
initialization: dead list = Φ

call: preprocess;
while active number ≥ 2 do

i = 0;
∆active number = 0;
while i < active number do

current active vertex = active list(i);
if Any neighboring vertices of current active vertex has
already been selected then

call: reduction;
else

call: growth;
end if
i ++;

end while
active number = active number - ∆active number;

end while
if dead list �= Φ then

Use maze algorithm to connect the vertices in the
dead list sequentially;

end if

The sub-function preprocess moves the periphery terminals
inside. The periphery vertices are connected to ground via
a small resistor. So the current distribution at periphery is



Fig. 3. Terminal distribution on a 5× 5 grid: (a) Before preprocess and (b)
After preprocess

influenced. To avoid this, we move the periphery terminals
inside to a new position, as shown in Figure 3. The terminals
are denoted by black dots and the edges selected in the
preprocess stage are denoted by bold lines. Note that the
terminal on the upper-left corner is moved right and then down
along the edges in black. It can also be moved inside along
the dashed edges as the total wirelength remains the same.

A vertex is “active” when it is newly added to the Steiner
tree during tree growth. For each active vertex, the subfunction
growth selects the available neighboring edge with minimum
current, adds the vertex at the other end of the edge to the
current active vertex list, and removes itself from the active
vertex list. An edge is not available when it connects the
current active vertex with a vertex on the periphery. This
is because the selection of this edge will cause the new
active vertex to be moved to the periphery, where the current
distribution is signifi cantly influenced by the GND resistors.

Algorithm 2 provides the procedure of sub-function growth.
Figure 4 shows an example of growth where the vertex in
the center is the current active vertex and the value beside
each edge is the current flowing through it. Although the edge
heading left has the minimum current (0.2833), it can not
be selected because it is not available. Therefore, the edge
heading right is selected as it has the minimum current among
the available edges.

Algorithm 2 Procedure of the sub-function growth

INPUT: current active vertex and the current distribution
of the escape graph;
OUTPUT: updated dead list, updated active list, updated
current active vertex and updated ∆active number;
search for the edge e with the minimum current among all
the available edges residing on the current active vertex;
if no such edge exists then

remove current active vertex from active list;
add current active vertex to dead list;
∆active num - -;

else
update current active vertex along edge e ;
mark edge e as selected;
mark current active vertex(i) as selected;

end if

The sub-function reduction is used to alleviate the influ-
ence of GND resistors. The periphery vertices are connected
to ground via a small resistor, thus influencing the current

Fig. 4. An illustration of subfunction growth at a vertex near periphery

distribution. To compensate for this, reduction changes the
tree structure when necessary. It functions when any of the
neighboring vertices has already been selected. When one of
the neighboring vertices has already been selected but has not
been connected with the current active vertex yet, add the
edge connecting them to the tree. Otherwise if it has already
been connected with the current active vertex, add the edge
connecting them to the tree and delete the edges on the path
connecting these two edges until the connectivity of the tree
is destroyed.

The detailed procedure of reduction is shown in Algorithm
3. Figure 5 is an example of reduction. The original tree is
A−B−C −D−E−F −G−H − I −J . The improved tree
after reduction is A−B −C −F −G−H − I − J , showing
edges C − D − E − F being replaced by edge C − F .

Algorithm 3 Procedure of the sub-function reduction
INPUT: current active vertex and the current distribution
of the escape graph
OUTPUT: updated dead list, updated active list, updated
current active vertex and updated ∆active number;
if any neighboring vertex is selected but it is not connected
with current active vertex then

select the edge e connecting them;
mark edge e as selected;
delete current active vertex from active list;
∆active number - -;

end if
if any neighboring vertex is selected and it is already
connected with current active vertex then

select the edge e connecting them;
delete the edges on the path connecting these two vertices
until the connectivity of the tree is destroyed;

end if

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

We have implemented the CDCTree algorithm in C lan-
guage. It was reported that the An-OARSMan algorithm pro-
duces the shortest wirelength among existing algorithms when
routing less than 100 terminals [13]. Therefore, we compare
our results with those of the An-OARSMan on an 800MHz
Sun V880 fi re workstation with Unix operating system. We



Fig. 5. An illustration of sub-function reduction on a 5×5 grid

Fig. 6. Results comparison between CDCTree and An-OARSMan

test the cases presented in [13] using the CDCTree algorithm
and the comparison between their results are shown in Figure
6. Both algorithms achieve the same optimal results in the
case (a), (b), (c), and (e). In the cases (d) and (f), the results
of CDCTree are better than those of An-OARSMan as shown
in red circles.

Figure 7 provides more examples to show the advantages
of CDCTree over An-OARSMan. In Figure 7, (a) and (b) are
the results of CDCTree, while (c) and (d) are their respective
counterparts produced by An-OARSMan. Improvements are
shown in red circles. It is obvious that CDCTree algorithm
produces shorter wirelength than An-OARSMan does.

Table 1 shows the comparison results upon test cases
with a different number of terminals and obstacles. For each
scale, we randomly select several different cases and represent
the average results. The fi rst two columns are the terminal
number and obstacle number of the test cases. The next four
columns are the wirelength and runtime of An-OARSMan and
CDCTree, respectively. From Table 1, we can see that when
the terminal number is less than 50, CDCTree can achieve
better result than An-OARSMan.

Fig. 7. Further results comparison between CDCTree and An-OARSMan

TABLE I

COMPARISON BETWEEN AN-OARSMAN AND CDCTREE

An-OARSMan CDCTree
Terminal Obstacle Length Runtime Length Runtime (s)

# # (s) I II
3 3 2350 <0.01 2350 <0.01 <0.01
5 3 4380 0.01 4350 0.01 <0.01
7 5 9610 0.04 9610 0.02 0.01
10 5 11340 0.06 10980 0.08 0.02
20 7 14790 0.28 13110 0.84 0.13
30 10 21220 0.77 19970 1.38 0.25
40 10 28600 1.98 27300 4.32 0.77
50 15 31330 3.22 31310 10.25 1.02

In physical design, most nets have less than 50 terminals,
with the exception of clock trees and power grids. In addition,
the terminals of the same net are usually placed close to each
other in the placement stage. Therefore, CDCTree algorithm
is practical in routing applications.

The time consumed by CDCTree can be divided into two
parts. Part I is the time used to solve linear equations and
Part II is the time used to construct OARSMT. CDCTree
consumes a majority of the time in Part I. This is because
we use the Gaussian-Seidel algorithm to solve the equations,
which is extremely ineffi cient. As the coeffi cient matrix for the
equations are sparse, positive-defi nite and symmetric, ICCG
or other effi cient algorithms can be employed to dramatically
reduce the run time. It is reported that ICCG is about 8, 000X

faster than the point Gaussian-Seidel method in solving linear
equations [17]. In addition, more advanced algorithms can
be employed to further reduce the runtime. For example,
an improved ICCG method was put forward in [18], which
can reduce the computation time by 30% − 50% compared
with the ICCG method. Therefore, by using these algorithms,
the runtime for equation-solving can be reduced to be small
enough to be neglected.

V. SUMMARY AND CONCLUSIONS

This paper focuses on OARSMT routing tree construction.
An heuristic algorithm named CDCTree is presented based
on a current driven circuit model. The algorithm maps the



escape graph into a circuit structure and replaces each edge
with one resistor. By performing DC analysis on the circuit
and selecting among the edges with the minimum currents
to construct the OARSMT, the resulting tree has a short
wirelength. Experimental results show that CDCTree achieves
better results than the existing best algorithm An-OARSMan
when the terminal number of a net is less than 50.
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