6B-4

Hierarchical Memory Size Estimation for Loop Fusion and Loop Shifting
in Data-Dominated Applications

Qubo Hu*
Per Gunnar Kjeldsberg*

* Norwegian University of Science and Technology, Trondheim, Norway

i IMEC vzw, Leuven, Belgium
i

Abstract — Loop fusion and loop shifting are important trans-
formations for improving data locality to reduce the number of
costly accesses to off-chip memories. Since exploring the exact
platform mapping for all the loop transformation alternatives is a
time consuming process, heuristics steered by improved data lo-
cality are generally used. However, pure locality estimates do not
sufficiently take into account the hierarchy of the memory plat-
form. This paper presents a fast, incremental technique for hier-
archical memory size requirement estimation for loop fusion and
loop shifting at the early loop transformations design stage. As
the exact memory platform is often not yet defined at this stage,
we propose a platform-independent approach which reports the
Pareto-optimal trade-off points for scratch-pad memory size and
off-chip memory accesses. The estimation comes very close to the
actual platform mapping. Experiments on realistic test-vehicles
confirm that. It helps the designer or a tool to find the interest-
ing loop transformations that should then be investigated in more
depth afterward.

1. INTRODUCTION

In most advanced embedded real-time communication and
multimedia processing applications, the manipulation of large
data sets has a major effect on both energy consumption and
performance of the system. This is due to the huge amount
of data transfers to/from large, energy consuming off-chip data
memories. Globally optimizing the memory accesses of data-
dominated applications is therefore critical for system perfor-
mance and energy consumption. Loop transformations are im-
portant techniques for improving parallelism, performance and
to reduce memory energy consumption [2, 19, 5]. They are
usually performed on a Geometrical Model (GM) [18]. Loop
fusion, or combining with loop shifting to satisfy dependency,
is the basic transformation for improving data locality [8, 17].
It was shown [6] that the search for optimal loop fusion for
global array contraction in general is an NP-complete prob-
lem. Heuristics based on data locality are hence used in the
existing work. Still, data locality is a very abstract measure,
so several techniques have been developed to estimate the real
size requirements for the large data structures [1, 20, 9, 14, 10].

However, the size as such does not directly represent how
the accesses to the costly off-chip memories can be reduced.
Indeed, the minimal size for some array may still be larger than

0-7803-9451-8/06/$20.00 ©2006 IEEE.

Arnout Vandecappelle'
Erik Brockmeyer"

Martin Palkovic'
Francky Catthoor ™

{qubo.hu, pgk}@iet.ntnu.no

{vdcappel, palkovic,brockmey, catthoor}@imec.be

also professor at Katholieke Universiteit Leuven, Belgium

the local memory. In addition, if sufficient locality between
read accesses is present, a local copy of part of the array may
already remove most of the off-chip accesses [7], making the
actual size of that array less relevant.

To select the interesting loop transformation candidates, it is
therefore necessary to estimate not just the size of each array,
but also their mapping on the hierarchical memory architec-
ture. The number of costly off-chip memory accesses depends
on which arrays and which copies can fit in the local memory.
In addition, the platform and hence the exact size of the mem-
ories are often not yet known at this early design stage, so the
estimation must take this unknown parameters into account.

In this paper we present a technique and tool support for hi-
erarchical memory size requirement estimation for loop fusion
and shifting. The basic idea has previously been introduced in
[11] but it is significantly extended here. Our focus is on the
Scratch-Pad Memory (SPM) based memory hierarchy, which
is a more energy-efficient alternative to caches. The global
view taken during data mapping replaces the area and energy
consuming hardware used in caches. The SPM is filled with
not only arrays [15], but also copies of the currently used part
of the arrays [4].

Our hierarchical memory size estimation is performed in
two main phases: a data reuse analysis phase and a Memory
Hierarchy Layer Assignment (MHLA) estimation phase. Data
reuse analysis is performed on the geometrical model by de-
termining, for every loop nest, the set of data which has reuse.
The different ways to copy data across the memory hierarchy
is represented in data reuse trees. Earlier work using exact data
reuse analysis techniques [16, 3, 12, 13] is either too limited,
or too slow to be used for the exploration of a huge number of
loop transformations. Instead of doing the actual geometrical
computations required for this analysis, we use a bounding box
approximation of the domains. This can be an over-estimate,
but in practical cases it turns out to be as good as an exact anal-
ysis. To further save computation time when loop shifting and
fusion are applied, we propose to incrementally compute the
data reuse trees based on the previous ones.

The MHLA estimation phase selects which arrays and
copies are stored in the SPM, such that the number of off-
chip memory accesses is minimized. The existing technique
for MHLA [4] finds the optimal selection for a given mem-
ory hierarchy (SPM size) using backtracking. Their approach

606

for
for

(y=0; y<=399; ++y)
(x=0; x<=639; ++x)
image([x] [y] = ...;

(y=0; y<=399; ++y)
(x=1; x<=638; ++x)
(z=-1; z<=1l; ++z)

= g(image[x+z] [y]);

// S1
for
for
for

// S2

Fig. 1.: Code example before loop transformation

is not feasible for our estimation purpose as the memory plat-
form instance is usually not defined at the loop transformation
stage: it is not realistic to perform an estimate for each possi-
ble memory hierarchy instance. Their heuristic has high com-
plexity and is hence too slow for large applications, making
it unfeasible to be used during the exploration of loop trans-
formations. Instead, a platform-independent heuristic is used,
which is fast but usually comes very close to their result. It
outputs Pareto curves (SPM size vs. off-chip accesses) for dif-
ferent loop transformations and helps to find the possibly good
loop transformation alternatives. The Pareto curve furthermore
allows an early energy estimate of any two-layer memory hier-
archy instance.

The rest of this paper is organized as follows. Section II re-
views the basic concepts in the geometrical model on which the
loop transformations are performed. Section III presents our
algorithm for doing fast hierarchical memory size requirement
estimation. Experiments on real-life applications are demon-
strated in Section I'V. Conclusions and future work are drawn
in Section V.

II. OVERVIEW OF THE GEOMETRICAL MODEL

The targeted data-dominated applications are at the system
level characterized by deep loop nests and multidimensional
arrays as shown in Fig. 1. Loop transformations are usually
performed on a geometrical model which uses multidimen-
sional iteration domains and access mappings to represent all
necessary information. The concepts needed to understand
how our techniques use the geometrical model are presented
below. Further details can be found in [18].

The iteration domain of a statement is a set of integer points
where each point represents exactly one execution of this state-
ment. Its description is derived from the constraints corre-
sponding to the boundaries of the surrounding loops and condi-
tions that restrict the execution of the statement. For example,
the iteration domain of statement S2 in Fig. 1 is described as:

IDs; = {[1,x,2][0 <y <399A1<x<638A—1<z<1}

Note that we leave out the constraint of integer points, [y, x,z] €
73, to simplify the formulas.

Each statement has a number of accesses to variables. For
our purpose, only the array accesses are important, as scalars
are assumed to be mapped to local memory anyway. Each ar-
ray reference (read or write) in the statement has an access
mapping: a function mapping the iterators to the array indices.
The access mapping for array image referenced in statement
S2 is described as:

AMinages2 = {[yx,2l — [a1,a]lai =x+zAhar =y
/\b)ax7Z] EIDSZ}

6B-4

The data domain of an array in a certain statement represents
which elements are accessed in that statement. It is found by
projecting the iteration dimensions from the access mapping:

DDinages2 = {la1,a2]|3y,x,z: a1 =x+zhNax =Yy
N [y,x,z] S IDSZ}
= {[al,aQHO <a; <639N0<ay < 399}

Usually, geometrical models use polytopes to represent the
domains. A large set of operations can be applied on poly-
topes, and they are sufficient to represent many practical ap-
plications. However, polytope operations are still rather com-
putationally expensive, especially counting the number of in-
teger points. Therefore, we use a simplified geometrical model
which uses only bounding boxes; computations on it are ex-
tremely fast. The idea was first introduced in [11] (where it
is called a hyperplane). A bounding box is specified by the
lower and upper bounds of the corresponding domain in each
dimension. In the examples given earlier, the bounding boxes
(denoted by D) are exact: IDsy = {[0,1,—1] — [399,638, 1]}
and DD page.52 = {]0,0] — [639,399]}.

III. HIERARCHICAL MEMORY SIZE ESTIMATION

This section explains how to do the platform-independent
hierarchical memory size estimation at the early loop trans-
formations design stage. Our approach consists of four steps.
Each of them is explained in the following subsections.

A. Initial data reuse analysis

Our data reuse analysis is performed on the geometrical
model and identifies the data (arrays or parts of arrays) that
are most frequently accessed at each loop nest. It can poten-
tially save energy and improve performance when the heavily
accessed data is copied from the main memory to the smaller
on-chip SPM from where it is accessed multiple times. The
frequently accessed data to be copied are called copy candi-
dates. The data reuse analysis is done for each array individ-
ually. Initially, all the array references for one array are con-
sidered together resulting in the declared array (root). This is
represented geometrically with the union of the data domains
of all array references. Then, the analysis is proceeded at each
loop dimension, starting from the outermost dimension. The
analysis is performed both for individual array references and
between different references. The recursive analysis at all loop
dimensions results a tree set of copy candidates, as shown in
Fig. 3 (it was called copy candidate graph in [7]).

At a certain loop dimension, the data domain at that level is
calculated by assuming that the current and all outermost di-
mensions remain constant. The descendant inner loop dimen-
sions projected as for the total data domain. This leads to the
following formulation for the data domain of array image in
statement S2 at the level of the x-loop:

DD age,52)y=0=1 = {la1,a2]|Fz:a1=14zAa=0
AN=1<z<1}

—
DDimage,SZb':(),x:] = {[an] - [270]}

607

6B-4

for (y=0; y<=399; ++vy)
for (x=0; x<=639; ++x) {
image([x] [y] = ...; // S1
if (x>=2)
for (z=-1; z<=1l; ++z)
= g(image[x+z] [y]); /] S2

Fig. 2.: Code example after loop fusion and shifting

The number of points in the data domain determines the size
of the copy candidate: 3 in the example. The bounding box ap-
proximation allows the use of a constant instead of a symbolic
for the data domain: the size is 3 independent of x. In addition,
it allows a very simple formula for the size.

n

#sizecc = H(UBDDi —LBpp, + 1)

i=1

where n is the number of array dimensions, UB and LB are the
bounding box boundaries per dimension.

Data reuse is present at a certain loop dimension when
the data domain at that level overlaps with the data do-
I(E)in at the same level in the next iteration. For instance,
DD nage s2jy—0.—2 = {[1,0] — [3,0]} is overlapping with
FDimage,SQ\y:O,x:l- In that case, a copy candidate is created at
that dimension. The overlapping part is called the reuse part.
The data in the reuse part does not need to be read from off-
chip memory but can be accessed in the SPM. To keep the SPM
up-to-date, in every iteration of the loop some data is copied
from the off-chip memory to the SPM. This is called the up-
date part. It is the difference between the data domain and the
reuse part. In the example, the reuse part has 2 elements and
the update part has 1 element. Note we only need to know the
size, which makes the computations very fast again (comput-
ing set difference is rather complex, even with the bounding
box approximation). The copy candidate also has to be initial-
ized with the reuse part in the first iteration of the loop.

To evaluate how useful a copy candidate is, we need to know
two figures: the number of accesses and the number of misses.

#accessescc = #itery;

where #iter,; means the total number of the iterations for all
loop dimensions surrounding the statement at where the array
is referenced. In the example, #accesses is 768000.

#missescc = #iterouer - (#iz€reuse part

+ #Sizeupdate part* #itercur)

where #iter,, and #itery,.r are respectively the number of it-
erations at the analyzing dimension and at all ancestor loop
dimensions. #misses at the x-dimension is hence 256000, cal-
culated as 400 - (2 + 1 - 640).

Fig. 3.a shows the data reuse tree for the example code in
Fig. 1. At the root, all array references are considered together.
The analysis then continues at dimensions y, x and z individ-
ually. Copy candidates with reuse are detected at the y and x-
dimensions. For the loop fused code shown in Fig. 2, the same
procedure is repeated. This time, interesting copy candidates

size = 256000
access = 1022800

size = 266000
access = 1022800

root

y-dim CC's1 y-dim CC's1zs2
misses= 256000 giza = 540 misses=0 size = 640
x-dim zdim
misses=256000 migosegl
z-dim z-dim
misses=763000 misses=768000

S2 s1 s2 s1

access=r68000 access= 256000 access=r68000 access= 256000

(@ (b)

Fig. 3.: Data reuse trees for the example codes (a) before any transfor-
mation and (b) after loop shifting and fusion

are detected at y-dimension and at the x-dimension when the
two array references are analyzed together. The analysis be-
tween multiple references is performed only if they are in the
same loop nest till the current dimension and they have identi-
cal index coefficients till the current dimension. Note that the
loop shifting and fusion has resulted in copy candidates with
no misses to the original array. The array does not even have to
be written to the main memory and can be kept completely in
3 SPM locations. This results in a significant energy reduction.

The data reuse trees show which copies are potentially in-
teresting to put in the SPM. However, they do not yet show
their impact on a hierarchical memory organization. That is
analyzed in the next step.

B. Platform-independent MHLA estimation

The MHLA estimation is performed based on the data reuse
trees. It maps the copy candidates together with the original
arrays (root) onto a memory hierarchy in order to minimize
the energy consumption. As there is usually no memory plat-
form defined at the loop transformations stage, we propose a
platform-independent MHLA estimation based on a two-layer
memory hierarchy template. The size of the main memory is
assumed to be unlimited, while the on-chip SPM layer has a
varying size. The reason behind is that this memory hierarchy
template enables us to simulate any two layer memory plat-
form instances with an early power estimate as explained af-
terward.

As a starting point, the SPM is empty and all accesses from
the processor go to the main memory. Then at each iteration,
the candidate giving the biggest potential benefit, as explained
below, is assigned to the SPM (replacing its children if they
were present). This procedure is repeated until all copy candi-
dates and arrays are assigned. At each iteration, the SPM size
increases and the accesses to the main memory decreases.

The potential benefit of a copy candidate is quantified by its
gain_factor. The one having the highest gain_factor among
all the unconsidered candidates is selected for assignment.

#accessescc — #missescc

gain_factorcc =

#sizecc

The rationale behind this selection criterion is that the candi-
date with the highest gain_factor replaces, per size unit in-
crease of SPM, the largest number of off-chip accesses with

608

accesses to the SPM. For example, the gain_factor for copy
candidate CCY, o5, shown in Fig. 3.b is 10228000 — 340933,
Each iteration results in a Pareto trade-off point between the
size of the SPM (denoted by #SPM _size) and the number of
accesses to the main memory (denoted by #MM _acc).

#SPM _size = Z#sizecc

#MM _acc = #accesses;prq -+ Z (#missescc — #accessescc)

in which #accesses; 4 1s the total number of accesses from the
processor core, and the sum is over the currently selected copy
candidates. In the end, all arrays are assigned to the SPM and
there are no accesses to main memory. Different loop transfor-
mation alternatives will result in their own Pareto curves.

Because of the incremental assignment, where each array
and copy candidate are only considered for assignment once,
our algorithm is very fast. It has a complexity of O(nlogn)
where n is the total number of copy candidates and arrays con-
sidered. For comparison, The algorithm used in[4] has a com-
plexity of O(2"n?logn) for a predefined two layer memory hi-
erarchy instance. Our platform-independent algorithm, on the
other hand, can be used for a whole range of possible two-layer
platform instantiations (e.g. with different SPM sizes or differ-
ent SPM bank activations on a configurable organization). It
gives a quick MHLA estimate with reasonable result, which is
acceptable for the estimation purposes. This is substantiated
on real-life applications in Section IV.

C. Data reuse analysis for incremental loop transformations

Previous techniques have no direct coupling between loop
transformations and data reuse analysis when incremental
transformations are performed. That is, the changed geomet-
rical model after a loop transformation must be dumped to C-
code which is then parsed back to the geometrical model for
repeated data reuse analysis. This dumping and parsing pro-
cedure is time consuming and is redundant as we can simply
update the geometrical model with the loop transformation per-
formed and then rebuild data reuse trees directly based on the
updated geometrical model.

Additionally, the data reuse tree rebuilding procedure can
be sped up by just rebuilding the trees for the transformed ar-
rays if not all arrays are affected at a time, as is typically the
case when loop transformations are performed incrementally.
If an array has only been transformed starting from a certain
inner loop dimension, it is for sure no changes happened on
its data reuse tree at the outer loop dimensions and those di-
mensions do not need to be updated. Fig. 4 shows our algo-
rithm with three alternatives for incremental data reuse analy-
sis. The choice of alternative is based on an evaluation of the
loop transformation effects. As data reuse analysis is the most
time consuming step in our estimation framework, this incre-
mental data reuse analysis can significantly reduce the execu-
tion time especially when the incremental loop transformations
only affect inner loop dimensions. Local data reuse tree update
at the transformed loop dimensions only is also possible, but
this cannot be proceeded without analysis of which transfor-
mations is exactly performed and it is considered for future
work.

6B-4

OMD = the outermost dimension
find all the transformed arrays in GM
update GM based on transformations
if (all arrays are transformed at OMD) then
| compute the trees for all arrays based on updated GM
else
for each transformed array
OMD_tra = its transformed outermost dimension
if (OMD_tra == OMD)
| recompute tree for this array based on updated GM
else
update tree starting from OMD_tra down

Fig. 4.: Incremental data reuse analysis algorithm

D. Comparison between different Pareto curves

Based on the Pareto curves generated for different loop
transformations, we determine the potentially good loop trans-
formation alternatives. All Pareto curves are combined into
a global Pareto curve, and any alternative contributing to the
global curve is good for a certain platform instance. A point
belongs to the global Pareto curve if it is not dominated in both
#SPM _size and #MM _acc by any other point. This means less
accesses to the main memory then any others. Since accessing
on-chip SPM memory is more energy efficient and faster than
accessing main memory, the global Pareto point will result in
the most energy efficient solution at least for this memory plat-
form instance. Hence, that loop transformation alternative re-
sults in minimal energy for certain memory platform instances.

This also demonstrates how we can simulate any two-layer
memory platform instances based on the Pareto curve for spe-
cific loop transformation. The Pareto point selected for simu-
lating the on-chip SPM layer should be the one having a size
as close as possible to, but not larger than, the SPM size of
the selected platform. The chosen Pareto point defines which
data that should be mapped on the on-chip SPM layer. The off-
chip memory of the selected platform should be large enough
to store the remaining data. The energy can hence be estimated
based on the number of accesses to each layer together with an
abstract energy-per-access model, which depends on the SPM
size. Energy estimation for a number of realistic two layer
memory platform instances are demonstrated on the real life
applications in the next section.

IV. EXPERIMENTAL RESULTS

Two realistic demonstrators are selected to present our auto-
mated estimation method. The first one is the cavity detection
algorithm used for detection of cavity perimeters in medical
imaging. The second one is the video compression algorithm
Quadtree Structured Difference Pulse Code Modulation (QS-
DPCM).

A. Cavity Detection

In the original cavity detection code, different intermedi-
ate arrays are produced and consumed in different loop nests.
Data locality can be improved with loop fusion (combined
with shifting to satisfy dependencies). Fig. 5(a) shows our
estimation results with Pareto curves for four selected incre-
mental loop fusion and shifting alternatives. The horizontal
axis shows the SPM size required and the vertical axis shows

609

--0--cav_det_2_1

— s -cav_det.2_2_1
—o—cav_det.2_2_2
—x—cav_det.2_2_3

(ratio)

ﬁ 2 Tl
(=== === == (]

#MM_accesses

0 - T T ;

4096
SPM Size (Bytes)

(a)

cav_det.2_1

Ocav_det.2_2_1
Bcav_det.2_2 2
cav_det.2_2_3

60 +N

% 2 2

-
(=)

Total Energy (mJ)

N
=]
L

TR TR R Y

A R

128 256 51

1Kk 2k 4k 8k
PM Size (Bytes)

w N

(b)

Fig. 5.: (a) Pareto curves and (b) energy estimate comparison for Cavity Detection

#MM _acc normalized over the total number of accesses from
the processor core (29 million). When the SPM size increases,
the main memory accesses decrease. As shown, the four Pareto
curves all contribute to global Pareto points when the SPM
size is 128 or smaller. This indicates that each loop trans-
formation instance may result in low power memory hierar-
chy exploration with very small SPM size. cav_det.2 22
and cav_det.2_2_3 both contribute to the global Pareto points
when the SPM size is larger than 1927. When SPM size is
larger than 5748, there is no off-chip memory accesses for
these two transformation alternatives, indicating that all data
can be accessed on-chip.

As mentioned, any transformation alternatives that con-
tribute to the global Pareto points can potentially result in min-
imal energy consumption. This is substantiated with the es-
timated energy for a number of two layer memory hierarchy
instances shown in Fig. 5(b). The energy is calculated based
on the number of accesses to each memory layer and an ab-
stract energy-per-access model. For this experiment our energy
estimate always has over-estimate with maximal 5% margin,
compared to the detailed data reuse analysis and MHLA [4].
As shown in the energy estimate, significant energy reduction
can be achieved when a suitable memory hierarchy instance,
together with the right version of codes, is chosen. For ex-
ample, the version of code cav_det.2.2 2 or cav_det.2 23
is selected for two layer memory hierarchy having 4K or 8K
SPM size.

Fig. 5(a) also shows why it is important for the mem-
ory size estimation to take into account the memory hi-
erarchy. The total memory size requirement is 5745
for cav_det.2_2_.3 and cav._det.2.2_3, and 2536880 for
cav_det.2_1 and cav_det.2_2_1. Without taking into account
the memory hierarchy exploration, the conclusion would there-
fore be that cav_det.2_1 and cav_det.2_2_1 are not interesting
at all. However, when the hierarchical memory size estima-
tion is performed, it turns out that for SPM sizes up to 1927,
cav_det.2_2_1 is a viable alternative. Since the original code
cav_det.2_1 has lower complexity (the loop shifting adds i f-
clauses), this alternative is actually preferred for small SPM
sizes. Analysis of the code complexity as a third trade-off axis
is hence required for future work.

B. QSDPCM

The QSDPCM algorithm is an inter-frame compression
technique for video images, which involves hierarchical mo-
tion estimation and a quadtree-based encoding of the mo-
tion compensated frame-to-frame differences. Fig. 6(a) shows
the estimation outputs with four Pareto curves corresponding
to the four selected incremental loop transformations alterna-
tives. All these four Pareto curves contribute to global Pareto
points. As shown, there are significant differences in the off-
chip memory accesses between the first two and the last two
transformation instances, especially when SPM size is between
1312 and 2496. Fig. 6(b) shows that choosing the right loop
transformations among the 4 choices can give 25% reduction
in total energy consumption for the memory platform having
2k SPM size.

As mentioned, speed is critical for the estimation among
the larger number of loop transformation possibilities. It is
also our motivation to do a fast estimation in order to help the
designer find the right loop transformation alternatives while
trading off a suitable memory hierarchy instance. Experiments
show the usefulness of our techniques. For the cavity detec-
tion algorithm, the approach in [4] takes 1.54 seconds of CPU
time for a single SPM size, compared to 0.30 seconds for all
sizes in our approach. For the QSDPCM algorithm, theirs
takes between 2 to 5 minutes for a single SPM size, compared
to 3.0 seconds for ours. In particular, our approach further
reduces the execution time during estimation for incremental
loop transformations. The time varies between close to 0 and
the time required for the first round estimate, depending on the
incremental loop transformations’ effects on data reuse trees
and the choices chosen to rebuild the new data reuse trees. In
contrast, the time is constant for each round analysis of the ap-
proach in [4]. The time difference will be very significant con-
sidering the exploration among a large number of loop trans-
formation possibilities. Note that [4] approach can only esti-
mate for one specific memory hierarchy instance at one time
and our implementation is in python which can be a factor 10
slower.

V. CONCLUSION AND FUTURE WORK

This paper presents a technique for hierarchical memory
size requirement estimation for loop fusion and loop shifting

610

- G- gqsdpem.c.02
—/r -qsdpem.c.04
——qgsdpem.c.09
——qgsdpcm.c.11

(ratio)

B
=3
)
=3

#MM_accesses

=

40960
SPM Size (Bytes)

61440 81920

(a)

102400

6B-4

40 1 qsdpem.02

Ogsdpem.04
Eqsdpcm.09
gsdpem.11

7

30

20

Total Energy (mJ)

21 Y

128

1k
SPM Size (Bytes)

(b)

2k 4k 16k

Fig. 6.: (a) Pareto curves and (b) energy estimate comparison for QSDPCM

at the early loop transformations stage. As a large number
of loop transformation possibilities exist and usually no mem-
ory platform is defined at this stage, we have proposed a fast
platform-independent hierarchical memory size estimation al-
gorithm. It outputs Pareto curves enabling to select the possi-
bly good loop transformations. The Pareto curve also permits
energy estimate for any two-layer memory hierarchy instances.
This helps the designer to select a memory hierarchy instance,
together with the right loop transformation alternatives. Exper-
iments show the satisfactory estimation result with fast speed,
which is critical for the exploration of the large number of loop
transformation possibilities.

Loop transformations improving data locality also have a
direct impact on array data lifetimes, which can potentially af-
fect the memory size requirement both for individual arrays
and between different arrays. This array lifetime analysis is
not yet considered in our method. As taking it into account
can potentially lead to better memory exploration, integrating
it in our method is considered for future work. As our estima-
tion method are in principle also applicable to any affine loop
transformations, the automation of incremental estimation for
general affine loop transformations is also left for future work.

REFERENCES

[1] F. Balasa, F. Catthoor, and H. De Man. Background mem-
ory area estimation for multi-dimensional signal processing sys-
tems. 3(2):157-172, June 1995.

U. K. Banerjee. Loop Transformations for Restructuring Com-
pilers: The Foundations. Kluwer Academic Publ., Norwell,
MA, 1993.

K. Beyls et al. Reuse distance-based cache hint selection. In
International Euro-Par Conference, 2002.

E. Brockmeyer, M. Miranda, H. Corporaal, and F. Catthoor.
Layer assignment techniques for low energy in multi-layered
memory organisations. In Proc. 6th ACM/IEEE Design and
Test in Europe Conf., pages 1070-1075, Munich, Germany, Mar.
2003.

F. Catthoor, S. Wuytack, E. De Greef, F. Balasa, L. Nachter-
gaele, and A. Vandecappelle. Custom Memory Management
Methodology, Exploration of memory organization for embed-
ded multimedia system design. Boston, MA, 1998.

A. Darte. On the complexity of loop fusion. Parallel Computing,
26(9):1175-1193, 2000.

J.-P. Diguet, S. Wuytack, F. Catthoor, and H. De Man. For-
malized methodology for data reuse exploration in hierarchical
memory mappings. In Proc. IEEE Int. Symp. on Low Power
Design, pages 30-35, Monterey CA, Aug. 1997. IEEE.

(2]

(3]
(4]

[5

—

[6

—

(7]

[8] A. Fraboulet, G. Huard, and A. Mignotte. Loop alignment for
memory access optimization. In Proc. 12th ACM/IEEE Int.
Symp. on System Synthesis.

[9] P. Grun, F. Balasa, and N. Dutt. Memory size estimation for
multimedia applications. In Proc. ACM/IEEE Wsh. on Hard-
ware/Software Co-Design (CODES), pages 145-149, Seattle,

WA, Mar. 1998.

Q. Hu, M. Palkovic, and P. Kjeldsberg. Memory requirement
optimization with loop fusion and loop shifting. In Euromi-
cro Symp. on Digital System Design (DSD’04), pages 272-278,
Aug. 2004.

Q. Hu, M. Palkovic, and P. Kjeldsberg. Memory requirement
optimization with loop fusion and loop shifting. In Euromi-
cro Symp. on Digital System Design (DSD’04), pages 272-278,
Aug. 2004.

I. Issenin, E. Brockmeyer, M. Miranda, and N. Dutt. Data reuse
analysis technique for software-controlled memory hierarchies.
In 3rd ACM/IEEE Design and Test in Europe Conf., pages 202—
207, Paris, France, Feb. 2004.

M. Kandemir and A. Choudhary. Compiler-directed scratch
pad memory hierarchy design and management. In Proc.
39th ACM/IEEE Design and Test in Europe Conf., pages 690—
695, Las Vegas, NV, June 2002.

P. Kjeldsberg, F. Catthoor, and E. J. Aas. Data dependency size
estimation for use in memory optimization. 22(7):908-921, July
2003.

P. R. Panda, N. D. Dutt, and A. Nicolau. Efficient utilization
of scratch-pad memory in embedded processor applications. In
Proc. 5th ACM/IEEE Europ. Design and Test Conf., pages 7-11,
Paris, France, Mar. 1997.

T. Van Achteren, F. Catthoor, R. Lauwereins, and H. De Man.
Search space definition and exploration for nonuniform data
reuse opportunities in data-dominant applications. 8(1):125—
139, 2003.

S. Verdoolaege, M. Bruynooghe, G. Janssens, and F. Catthoor.
Multi-dimensional incremental loop fusion for data locality. In
Proc. Int. Conf. on Application-specific Systems, Architectures
and Processors (ASAP), pages 17-27, Leiden, The Netherlands,
June 2003.

D. K. Wilde. A library for doing polyhedral operations. Master’s
thesis, Oregon State University, Corvallis, OR, Dec. 1993. also
Technical Report PI-785, IRISA, Rennes, France.

M. E. Wolf and M. S. Lam. A data locality optimizing algo-
rithm. In Proc. ACM SIGPLAN 91 Conf., pages 30—44, Toronto,
Canada, June 26-28 1991.

Y. Zhao and S. Malik. Exact memory size estimation for array
computations without loop unrolling. In Proc. 36th ACM/IEEE
Design Automation Conf., pages 811-816, New Orleans, LA,
June 1999.

[10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

611

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

