
Reusable Component IP Design using Refinement-based Design Environment

Abstract - We propose a method of enhancing the reusability of
the component IPs by separating communication and
computation for a system function. In this approach, we assume
that the component designers describe mainly the computation
part of the component, and the system designer can construct
the communication part by using our refinement-based design
environment. Moreover, we introduced a concept of the
Communication Architecture Template Tree (CATree), which
helps IP designers to effectively separate computation and
communication for a system function. We confirmed that this
approach is effective by applying it to a H.264 decoder design.

I. Introduction

Reuse-centric design methodologies including IP-based
design and platform-based design have been widely
accepted in the SoC industry . Its effectiveness is determined
mainly with the richness of the component IPs and their
reusability. We can enhance the component reusability
substantially by using the standard bus interfaces [1] such as
AMBA and Core Connect and generic memory interfaces
such as an on-chip SRAM interface.

Although integrating the component IPs with standard
interfaces is easier, there are still several limitations. First,
connecting components with different protocols incurs
considerable overheads. Second, standard interfaces limit the
internal architecture of the component. Furthermore, the
standard interfaces limit the system-level communication
architecture. Consequently, there have been strong attentions
on using flexible communication interfaces [2,4-6].

In this paper, we propose a method to enhance the
reusability of component IPs by exploiting the concept of
orthogonalization. We re-defined the roles of the component
and system designers. The component designers should
capture mainly the computation part of a function and its test
model with only essential architectural hints for the
communication refinement and provide a component IP
package, which is described in details in Section IV, to the
system designers. The system designers should configure
only the communication part of the component IP to make it
best fit to the system with our refinement-based design
environment where we introduced a concept of the
Communication Architecture Template Tree (CATtree).

The CATtree provides communication architecture
templates to the system designers so that they can refine the
communication part of the component for a system function
before integrating it to the system. Therefore, the component

designers just model the computation part of the component
IP without worrying about the refinement of its
communication part.

The rest of this paper is organized as follows. In Section
II we review the previous works on reusable component
designs and refinement-based design methodologies. We
introduce the refinement-based design environment and
explain the proposed component IP package in Sections III
and IV, respectively. After describing a H.264 VLD
component design example in Section V. we summarize our
contributions and future works in Section VI.

II. Related Works

Several methods that provide more flexibility in the
communication interface have been proposed. These
component design methods can be summarized into two
approaches: standard interface-based and abstract
interface-based.

A. Standard Interface-based Component Design Approach

There are several popular standard interfaces for on-chip
buses and memories, which are main primitives for the
system integration. Among the various on-chip bus
interfaces, AMBA is the most popular bus interface, which
defines transaction functions, protocols and RT-level signals.

The example shown in Figure 1 is a design environment
for a standard interface-based component that has three
functions FA, FB and FC, which communicate with peer
functions AF, BF, and CF, respectively, in a system with
standard interfaces. Although its intended functions were
initially only three, the final component IP contains eight
functions including two bus interface, two buffer, one
on-chip memory interface. Although integrating a
component IP to the system is relatively easy, designing the
component IP itself is more complicated. Especially, it is
difficult and time-consuming to design and verify the bus
interface logic. Moreover, in designing a component IP with
a standard interface, the component designer should make
several architectural decisions, for example,

Bus interface standard: AMBA or CoreConnect
Memory type: On-chip memory, External memory
of bus interfaces and on-chip memory interfaces
Bus interface types: Bus master or Bus slave
Existence of internal buffers and those sizes

Sanggyu Park, Sangyong Yoon, and Soo-Ik Chae

Center for SoC Design Technology and
School of Electrical Engineering and Computer Science

Seoul National University,
Seoul 151-742, KOREA

email : {sanggyu, syyoon, chae}@sdgroup.snu.ac.kr

Function FB

Function FC

Function FA Bus
Slave

Interface

Bus
Master

Interface

On-chip Memory
Interface

Standard Interface based Component

180180

180180internal
communication

On-Chip Memory
(SSRAM, DPSRAM)

Standard
On-Chip Bus

Buffer

Buffer

System or Testbench

Function AF

Bus
Master

Interface

Function BF

Bus
Master

Interface

Function CF

Bus
Slave

Interface

Figure 1. Standard Interface-based Component Design

To build an optimized system, these architectural
decisions should be made not by the component designer,
but by the system designers. Although this approach eases
system-level hardware integration, it limits the system level
design space.

B. Abstract Interface-based Component Design Approach

Exploiting the concept of orthogonalitzation can enhance
the reusability of the component IPs. There are two types of
orthogonalization: the separation of a function and its
architecture and the separation of computation and
communication for a function. Many researchers have made
good contribution, which can be summarized in three stages:
(1) finding a good abstraction of various interfaces, (2)
generating wrappers efficiently and automatically, and (3)
refining the architecture of system functional models

In the stage (1), VCI [4] and OCP-IP [5] defined generic
protocol between the internal core part of a component IP
and its bus wrapper. In figure 1, VCI and OCP-IP can be the
interface between FA and its bus slave wrapper. The bus
interface controller, internal buffers and on-chip memory
controllers are the wrappers in this category.

In the stage (2), methods for wrapper generation or
synthesis were studied. Y. Hwang et. al. [2] proposed a
method for generating communication wrappers from the
timing diagram. They showed that synthesized wrappers are
more efficient in terms of delay and area comparing to the
generic wrappers and bridges.

In the stage (3), the refinement-based system design is an
important issue in the design automation. F. Gharsalli, A.
Jerraya et. al. [7,8] proposed an MPSoC design methodology.
The computation part of the function is captured as a virtual
component (VC), which is mapped onto architectural
components: processors, memories and ASIC IP cores. Then,
the architectural components are integrated with generic
wrappers. S. Abdi, D. Shin, D. Gajski [9] proposed a
communication synthesis tool, which is based on their own
refinement-base design environment where they capture the
communication function as a channel and refine it using a
protocol library, which is a template set for the channel
implementation.

III. Refinement-based Design Environment

The refinement-based design approach is a top-down
system-level design methodology, in which the system level

functions are first captured at a higher abstraction level. A
system function should be divided into computation and
communication functions. Hereafter, a communication
function is called as a channel. After each system-level
function is captured, each of its computation functions or
channels is refined into a more concrete implementation step
by step by making a certain architectural decision such as
HW-SW partitioning, types of processors, types and sizes of
on-chip memories, and the number of ASIC cores or
embedded FPGAs.

Computation functions and channels of a system-level
function should be captured separately with the hints from
the refinement-based design environment. Because the
channels such as FIFOs, arrays, and buses are commonly
used in the system modeling, we provide them as a primitive
library. The functional model shown in Figure 2 is for the
component design example described in Section II, which
includes six computation functions, three FIFO channels and
a memory channel. Each computation function and channel
is connected to the others through abstract interfaces
regardless of their architectures or implementations.

RTL FB S/W BF
FIFO
HdSOS

Register
FIFO

FIFO RTL
Interface

uP-RTL
Interface OS API FIFO API

processor

Function FB

Function FC

Function FA Function AF

Function BF

Function CF

FIFO CHA

FIFO CHB

FIFO CHC

Mem CHM

Abstract interfaces

Communication Functions
(Channels)

Computation
Functions

(User modules)

Figure 2. System Function Model and Partial Refinement

In our refinement-based design flow, a system-level
function model is integration of user-defined computation
functions with selected channels. A system implementation
process can be seen as channel template replacement and
high-level synthesis (or manual re-description) of the
computation functions to a lower abstraction level. Our
refinement-based design environment provides the following
three types of hints to make modeling and refinement easy:
(1) hints for primitive channels that are the most frequently
used for communication.
(2) hints for abstract interfaces for function modeling, RTL
and S/W implementation.
(3) hints for architecture templates for refining the primitive
channels.

These hints are represented with communication
architecture template trees (CATtrees). Next, we explain
primitive channels, abstract interfaces and channel templates
before explaining the CATtrees

A. Primitive Channels

Models of computation like Kahn Process Network

(KPN) and Synchronous Dataflow Network (SDF) provide a
well-defined set of abstract communication functions or
channels. Although an abstract FIFO, which is the
fundamental communication function of KPN and SDF, can
model any point-to-point communication, it is too abstract to
model an application function with the abstract FIFO. It is
not easy to refine a MoC-modeled system function with it.
Therefore, we replace it into the following four types of
primitive channels, which are more concrete and widely
used in the real application function modeling and system
implementation.

(1) FIFO channels
A FIFO channel has two primitive functions: a blocking

read and a blocking write, which are sufficient for capturing
a high-level FIFO function. For the step-by-step architecture
refinement, however, we additionally defined four additional
functions such as peek, clear, more and sync. A peek
function just checks the data without data retrieval, which is
useful for H/W RTL implementation. A clear function
initializes the FIFO channels. A more function returns true if
there is more data to be written, which is useful to determine
when to destroy a dynamically allocated channel. A sync
function returns true if the written data is transferred to the
reading counterpart, which is relevant when the refined
architecture of a FIFO channel has intermediate buffers. The
FIFO channel provides two abstract interfaces:
abs_fifo_write interface and abs_fifo_read interface.

(2) Variable channels
A variable channel provides read and write functions,

which do not have data synchronization. This channel is
very useful in modeling memories updated infrequently.
This channel provides abs_var_read and abs_var_write
interfaces.

(3) Array channels
An array channel is a set of variable channels that is

pointed by an index. Its primitive functions include index
read and write functions. Although the array and variable
channels are not required in the most MoCs, they are very
useful in modeling and refining architecture. An array
channel is an abstraction of memories including on-chip and
external memories. Therefore, it is not easy to write a RTL
model without using them in many cases. This channel
provides abs_array_read and abs_array_write interfaces.

(4) Bus channels
A bus channel can perform point-to-point data transfers

through a shared medium. In the top-down approach, a bus
channel is not necessary in the function modeling. In the
bottom-up approach, however, the bus channels are the most
important communication pattern to connect components. In
our refinement-based design environment, the bus channel is
not used in function modeling but many partially refined
(PR) channels, which will be explained later, have bus
interfaces. For example, the PR channels and adapters
related to the S/W have bus interfaces because RISC

processors have a bus master interface.

B. Abstract Interfaces
In the system function model, an abstract interface is a

boundary between a computation function and a channel.
For computation of a function, its abstract interfaces mean
primitive functions that it can use. For communication of a
function, its abstract interfaces mean primitive functions that
it must implement. Therefore, the abstract interfaces are a
key to separate computation and communication for a
function. An abstract interface is active for computation
while it is passive for communication. An active interface of
a computation model is connected to a passive interface of
the channel. An abstract interface can be refined into three
concrete interfaces: a TLM one for function capture and
transaction level simulation and a RTL one for RT-level
implementation, and a SW API one for S/W implementation.

C. Partially Refined Channels (PR channels)
Partially refined (PR) channels are used to refine

primitive channels such as FIFOs, variables and arrays by
making certain architectural decisions.

(1) Bus-FIFO Channels
A bus-FIFO is two FIFO channels that are connected

using a bus channel, which can be refined to a Bus Master
Write FIFO (top) and a Bus Master Read FIFO (bottom) as
depicted in Figure 3(a). Although the internal architecture of
a bus-FIFO is complex, its function is the same with that of
the abstract FIFO channel.

(2) Cached Array Channels
A cached array channel is an array channel that contains a

cache. An array channel is often refined into an external
memory. However, an external memory has long latency and
limited bandwidth. Therefore, an array channel can first be
refined to a cached array channel that is connected to an
external memory as depicted in Figure 3(b).

(3) Bus-Memory Channels
Some memories are shared with many computation

functions. A bus-memory is an abstraction of shared
memories that has a bus slave interface. A bus-memory
channel can be refined to either an on-chip memory (left) or
external SDRAM memory (right) as depicted in Figure 3(c).

(4) Channel Adapters
There are two types of channel adapters, which are

interface and abstraction adapters. An interface adapter is
used to connect two different types of channels. For example,
a Bus Master Read FIFO channel shown in Figure 3(a)
contains a bus_fifo_sender channel and a bus_fifo_receiver
channel. These two PR channels are interface adapters. They
adapt a FIFO channel to a bus channel. An abstraction
adapter connects two channels in different abstraction levels.
For example, a TLM-to-RTL adapter and a RTL-to-TLM
adapter can connect a transaction-level model of
computation to a RTL model of channel for a function or

vice versa.

D. Channel Templates
Channel templates are configurable implementations of

the primitive and PR channels, which are actually
parameterized source files or generators. There are three
templates for each channel: TLM, RTL, and S/W ones. A
channel template has template parameters. To instantiate a
channel instance, the value of the template parameters must
be determined.

FIFO channelW R

passive abs_fifo_write passive abs_fifo_read

(a) Bus Master Write FIFO and Bus Master Read FIFO

Bus_senderW M Bus_receiverS R

active bus_master active bus_slave

bus channel

Bus_keeperW S Bus_readerM R

active bus_slave active bus_master

bus channel

Array channelW R

passive abs_array_write passive abs_array_read
Array Cache

W R

Array channelW R

W R

active abs_array_write active abs_array_read

(b) Cached Array

Bus Memory
S

active bus_slave S

SSRAM Ctrl
O

O

On-chip
SSRAM

S

SDRAM Ctrl
O

O

External
SDRAM

active ssram_if active sdram_if

(c) Bus Memory

Figure 3. Partially refined channels

E. Communication Architecture Template Trees
A communication architecture template tree (CATtree)

for an abstract channel is the collection of a primitive
channel, an abstract interface and a set of templates for the
abstract channel. We named CATtree because the
architectures are expanded like a tree as shown in Figure 4.

Representing the architectural information for an
abstract channel with its CATtree is an effective and
integrated way of realizing the orthogonalization of function
and architecture for communication. Providing a set of
CATtrees can clearly expose what are communication
functions and what are not for the designer. Once a
communication function for a system function is captured
with the CATtree for an abstract channel, refinement of that
channel is guaranteed by its corresponding templates.

Computations for a system function are modeled with the
TLM APIs in the CATtree and they are integrated to build its
system function model. This system function model is the
starting point of further implementation. Channels in the
system function model are refined by replacing it with
templates of the CATtree. Computations can be refined to
RTL or S/W by high-level synthesis tools or by hand. Each
computation and communication can be refined
independently exploiting the abstract interfaces and adapters.
Note that we do not cover the refinement of computation in
this paper.

FIFO CATreeVariable CATree Array CATree Barrier CATree ...

abs_inf_fifo

finite_fifo

register_fifo array_fifo

hardwired_fifobuswired_fifo

master_read
buswired_fifo

master_write
buswired_fifo

dual_port
memory_fifo

buswired
array_fifo

master_read
array_fifo

master_write
array_fifo

RTL
Model

OS-aware
Model

DSP/ASIP
ASM code

...

TLM
Interface

S/W
API

DSP/ASIP
Instruction

Signal-
Timing

Interface

FIFO CATree

Computation
Function
Modeling

Computation
Architecture

Modeling

Communication
Function

Communication
Architecture

Figure 4. Communication Architecture Template Tree

IV. Reusable Component IP Design

Refinement-based design is an alternative to the
reuse-centric design methodology. However, the
platform-based design methodology is still attractive to the
design teams who have systems that have been
pre-integrated and verified. Therefore, reusable components
are still important matters for them. However, conventional
component IPs, which are designed to have standard
interfaces, have limited reusability. Therefore, we introduce
a new method of component IP design and delivery that
utilizes our refinement-based design environment.

In this method, a component designer captures the
component function using the TLM interfaces in the
CATtrees. At the same time, he or she should model its test
drivers. The test drivers generate stimulus to the captured
component function and validate its response from the
captured function model. By connecting the component
function and its test-drivers with the TLM templates in the
CATtrees, the component design obtains a testbench for
validation, verification and interface refinement of the
component IP. CATtree-based function capture of the
component IP is relatively easier than bus-aware function
modeling because he or she can concentrate on the
computation and ignore communication related details.

The component designer can describe a RTL model of the
computation function with the RTL interfaces. An
abstraction adapter is inserted when a RTL computation
function is connected with transaction-level channels and
test drivers. Most of the designers have difficulty in
designing a component because of the bugs related to its
interfaces. In our approach, the designer can ignore the
details about communication, which greatly reduces the
complexity of the RTL design. For a computation function,
we define the set of its transaction-level model, RTL model,
and testbenches as the augmented deliverable package of its
reusable component IP.

 System designers can configure the communication part
of the component IPs with our refinement-based design
environment. The system designers replace an abstract
channel with a more concrete one by using the CATtrees.
Because they replace the channels instead of adapting the
interfaces, the communication parts of the test drivers are
also refined together. Therefore, without any manual

modification of the testbenches, the system designers can
execute them to estimate the performance of the component
IP and to verify the refined model at each refinement step.

V. An H.264 VLD Component Design

We designed a new H.264 decoder system by reusing a
system design shown in Figure 5. We decided to design and
integrate a new dedicated hardware IP for the VLD
operation. We followed the platform-based design
methodology, utilizing the proposed method to design a
more reusable VLD component IP as follows.

Figure 5. H.264 decoder SoC Platform

A. Reusable H.264 VLD Component IP design
A component designer designed an H.264 VLD

component IP with the design flow we described. First, he
captured its computation function and developed its test
drivers, which took about a. week (Figure 6). The
computation consists of a VLD core, an nC calculation block
and a NAL decoder, which has 4 FIFO interfaces and 1 array
interface. The VLD core decodes Exp-Golomb and CAVLC
codes. The nC calculation block determines which mapping
table is used in the VLD core to decode a CAVLC code. The
NAL decoder eliminates the emulation prevention codes in
the bit-stream.

After modeling the VLD function, he manually described
its RTL model in HDL with the RTL interfaces of the
CATtrees. The RTL model can decode an Exp-Golomb code
in 1 cycle, a 2x2 chroma DC in 10 cycles (average) and 4x4
residual decoding in 30 cycles (average). We synthesized the
RTL model using the Synopsys DesignCompilerTM and the
estimated gate count was 8277 gates at 5 ns delay in 0.18 um
process technology. He finished both description and
verification of the VLD RTL model in two days. It was
relatively faster than its function modeling because of the
two reasons. First, we described only a computation part in
details. In general, the communication part is more complex
and error-prone than the computation part. In our approach,
however, potential communication errors are eliminated by
exploiting the simple abstract interfaces of the CATtrees.
Second, in the verification of RTL description we reused all
the test models used for function modeling.

B. Communication Refinement and System Integration
A system designer configures the communication part of

the H.264 VLD computation and integrates it to an existing
platform. Here we present two implementations of the VLD

IP in the H.264 decoder for QCIF (176*144) and HDV
(1280*768) images, respectively.

(1) VLD decoding for QCIF images
In decoding QCIF images of 15fps, both computation and

communication loads are low. The system designer decided
to configure the VLD computation to have only an AHB
slave interface for easier system integration. Because
Flexible Macroblock Ordering (FMO) in the H.264 baseline
profile, he also decided that the array channel connected to
nC calculation sub-block has only 44 indices. In this
configuration, the memory size is 220 bits and he finally
decided to refine the array channel into a register array.
Figure 7(a) shows refinement steps. The total gate count of
the communication part was 12,150 gates

(2) VLD decoding for HDV images
In decoding HDV images of 30 fps, both computation and

communication loads are very high. Additionally the H.264
decoder must support the FMO feature. Because the FMO
feature requires all nC values of a frame, ARRAYnC must
have at least 92160 indices, which is too big to be
implemented with registers or on-chip memories. Thus, he
decided to configure the H.264 VLD computation with the
following five refinements:

FIFOCMD to a 8 depth Bus-Master Write channel and
refine FIFOVLD to a 8 depth Bus-Master Read channel
a bus slave interface is shared by FIFOCMD and FIFOVLD.
FIFOITQ to a dedicated register FIFO.
FIFOSTRM to a memory FIFO that have a cache with 16
registers of 8-bit width
ARRAYnC to an external memory with cache.

Figure 7(b) shows the refinement steps according to the
decisions listed above. The total gate count of the
communication part was 10,559 gates.

nC
Calculation

Block

NAL
decoder

VLD Core
CAVLD
Output
Verifier

VLD
Command
Generator

Bit-stream
Loader

VLD
Output
Verifier

FIFOCMD FIFOVLD

FIFOITQ

FIFOSTRM

ARRAYnC

R R

W

W

R

R

R

W W

W

Figure 6. H.264 VLD Component IP

VI. Conclusions

We proposed an effective design approach to enhancing
the reusability of component IPs. In this approach, we
re-defined the roles of component and system designers. In
designing a component IP, a component designer captures its
computation and its communication in an abstract way while
a system designer refines its communication part with our
refinement-based design approach. We also proposed an
augmented component IP deliverable package according to
the redefined roles of the component and system designers.

RISC
Processor
(ARM9)

Motion
Compensation

Accelerator

Integer Transform &
Quantization
Accelerator

In-Loop
Deblocking

Filter Accelerator

Dual Port
On-Chip Memory

Memory Controller

Dual Port
On-Chip Memory

Memory Controller

DMA
Controller

H.264 Decoder Platform

AHB

H.264
VLD

Accelerator

Our refinement-based design environment introduced a
concept of the Communication Architecture Template Tree
(CATtree), which can clearly separate computation function
and communication architecture. Moreover, it provides
generic interfaces to model both of them. After designing a
VLD component for H.264, we found that the concept of the
CATtree is effective for the communication refinement.

With this proposed approach, the component designers
can design computation functions easily and the system
designer can explore a larger design space with the help of
the CATtree.We are now developing an H.264 decoder
system with our design environment to exploit the full
power of the CATtree. We will cover the refinement of
computation later in another paper.

References

[1] Michael Keating, Pierre Bricaud, “Reuse methodology
manual”, Kluwer academic publisher, 2002

[2] Y.-T. Hwang and S.-C. Lin, “Automatic protocol translation

and template based interface synthesis for IP reuse in SoC”,
Proc of 10th ASP-DAC, pp. 565-568, Dec. 2004

[3] K. Keutzer, S. Malik, et. al., “System-level design:
Orthogonalization of concerns and platform-based design”,
Trans. on Computer-Aided Design of Integrated Circuits and
Systems, Vol19, No. 12, pp. 1523-1542, Dec. 2000.

[4] VSI Alliance On-Chip Bus Development Working
Group,“OCB 2.0”, Apr. 2001

[5] Sonics Inc. “Open core protocol specification 1.0”, 2000
[6] W. Cesario,D. Lyonnard,G. Nicolescu,Y. Paviot,S. Yoo,A.

Jerraya, “ Multiprocessor SoC Platforms : A Component
Based Design Approach", IEEE Design & Test of Computers,
pp. 52-63, Nov. 2002,

[7] F. Gharalli, D. Lyonnard, S. Meftali, F. Rousseau, A. A.
Jerraya, “Unifying memory and processor wrapper
architecture in multiprocessor SoC design”, proc of ISSS’02,
pp. 26-31, Oct. 2002.

[8] S. Abdi, D. Gajski, “Automatic generation of equivalent
architecture model from functional specification”, Proc.
of42th DAC, pp. 608-613, June, 2004

Figure 7. H.264 VLD Component IP Configuration Example

nC
Calculation

Block

NAL
decoder

VLD Core
CAVLD
Output
Verifier

VLD
Command
Generator

Bit-stream
Loader

VLD
Output
Verifier

Bus_sender

FIFOSTRM

ARRAYnC

R

W

W

R

R

B
us

_r
ea

de
r

Bu
s_

ke
ep

er

FIFOITQR

W

W

FIFOCMD FIFOVLD

R R

W W

Bus_recever

Bus_sender

R

W

Bus_recever

R W

Bu
s_

re
ce

iv
er

Bu
s_

se
nd

er

R W

R W

Reg_array

nC
Calculation

Block

NAL
decoder

VLD CoreW

W

R

R

R R

Bu
s_

ke
ep

er

Bus_recever Bus_keeper Bus_receiver

R
eg_array

CAVLD
Output
Verifier

R

VLD
Command
Generator

W

VLD
Output
Verifier

W

Bit-stream
Loader

W

Bus_reader Bus_sender Bus_reader Bus_reader

shared_bus_master

shared_bus_slave

Configured H.264 VLD IP

width: 8 bit
depth: 32
4163 gates

8277 gates

AHB Slave I/F

width: 16 bit
depth: 16
3103 gates

width: 12 bit
depth: 4
664 gates

width: 32 bit
depth: 4
1488 gates

width: 5 bit
index: 44
2732 gates

(a) H.264 VLD Component IP configuration for QCIF Decoding

nC
Calculation

Block

NAL
decoder

VLD CoreW

W

R

R

R R

VLD
Command
Generator

FIFOCMD

W

Bus_sender

R

W

Bus_recever

VLD
Output
Verifier

Bus_sender

R

W

FIFOVLD

W

Bus_recever

CAVLD
Output
Verifier

FIFOITQR

Reg_FIFOR W

Bit-stream
LoaderFIFOSTRM W

ARRAYnC

Cache

R W

ARRAY

Bus_arr_ctrl

bus_mem

SDRAM_ctrl

SDRAM

Array_FIFO WR

Array

Bus_mem

Bus_arr_ctrl

SDRAM_ctrl

SDRAM

nC
Calculation

Block

NAL
decoder

VLD CoreW

W

R

R

R R

Bus_recever Bus_keeper

VLD
Command
Generator

W

VLD
Output
Verifier

W

Bus_sender Bus_reader

shared_bus_master

shared_bus_slave

AHB Slave I/F

R
eg_FIFO

Bus_arr_ctrl

C
ache

S
D

R
A

M
_ctrl

SD
R

AM
shared_bus_m

aster

Array_FIFO

Bus_arr_ctrl

FIFO
 R

TL I/F

AH
B M

aster I/F

FIFO RTL I/F

Bit-stream
Loader

W

width: 12 bit
depth: 4
664 gates

width: 32 bit
depth: 4
1488 gates

width: 16 bit
depth: 16
2816 gates

width: 5 bit
depth: 16
1283 gates

288 gates

288 gateswidth: 8 bits
depth: 16
3732 gates

8277 gates

(b) H.264 VLD Component IP configuration for HDV Decoding

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

