
Reusable Component IP Design using Refinement-based Design Environment 

Abstract - We propose a method of enhancing the reusability of 
the component IPs by separating communication and 
computation for a system function. In this approach, we assume 
that the component designers describe mainly the computation 
part of the component, and the system designer can construct 
the communication part by using our refinement-based design 
environment. Moreover, we introduced a concept of the 
Communication Architecture Template Tree (CATree), which 
helps IP designers to effectively separate computation and 
communication for a system function. We confirmed that this 
approach is effective by applying it to a H.264 decoder design. 

I. Introduction 

Reuse-centric design methodologies including IP-based 
design and platform-based design have been widely 
accepted in the SoC industry . Its effectiveness is determined 
mainly with the richness of the component IPs and their 
reusability. We can enhance the component reusability 
substantially by using the standard bus interfaces [1] such as 
AMBA and Core Connect and generic memory interfaces 
such as an on-chip SRAM interface. 

Although integrating the component IPs with standard 
interfaces is easier, there are still several limitations. First, 
connecting components with different protocols incurs 
considerable overheads. Second, standard interfaces limit the 
internal architecture of the component. Furthermore, the 
standard interfaces limit the system-level communication 
architecture. Consequently, there have been strong attentions 
on using flexible communication interfaces [2,4-6]. 

In this paper, we propose a method to enhance the 
reusability of component IPs by exploiting the concept of 
orthogonalization. We re-defined the roles of the component 
and system designers. The component designers should 
capture mainly the computation part of a function and its test 
model with only essential architectural hints for the 
communication refinement and provide a component IP 
package, which is described in details in Section IV, to the 
system designers. The system designers should configure 
only the communication part of the component IP to make it 
best fit to the system with our refinement-based design 
environment where we introduced a concept of the 
Communication Architecture Template Tree (CATtree).  

The CATtree provides communication architecture 
templates to the system designers so that they can refine the 
communication part of the component for a system function 
before integrating it to the system. Therefore, the component 

designers just model the computation part of the component 
IP without worrying about the refinement of its 
communication part. 

The rest of this paper is organized as follows. In Section 
II we review the previous works on reusable component 
designs and refinement-based design methodologies. We 
introduce the refinement-based design environment and 
explain the proposed component IP package in Sections III 
and IV, respectively. After describing a H.264 VLD 
component design example in Section V. we summarize our 
contributions and future works in Section VI. 

II. Related Works

Several methods that provide more flexibility in the 
communication interface have been proposed. These 
component design methods can be summarized into two 
approaches: standard interface-based and abstract 
interface-based.  

A. Standard Interface-based Component Design Approach 

There are several popular standard interfaces for on-chip 
buses and memories, which are main primitives for the 
system integration. Among the various on-chip bus 
interfaces, AMBA is the most popular bus interface, which 
defines transaction functions, protocols and RT-level signals.  

The example shown in Figure 1 is a design environment 
for a standard interface-based component that has three 
functions FA, FB and FC, which communicate with peer 
functions AF, BF, and CF, respectively, in a system with 
standard interfaces. Although its intended functions were 
initially only three, the final component IP contains eight 
functions including two bus interface, two buffer, one 
on-chip memory interface. Although integrating a 
component IP to the system is relatively easy, designing the 
component IP itself is more complicated. Especially, it is 
difficult and time-consuming to design and verify the bus 
interface logic. Moreover, in designing a component IP with 
a standard interface, the component designer should make 
several architectural decisions, for example,   
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Figure 1. Standard Interface-based Component Design 

To build an optimized system, these architectural 
decisions should be made not by the component designer, 
but by the system designers. Although this approach eases 
system-level hardware integration, it limits the system level 
design space.  

B. Abstract Interface-based Component Design Approach 

Exploiting the concept of orthogonalitzation can enhance 
the reusability of the component IPs. There are two types of 
orthogonalization: the separation of a function and its 
architecture and the separation of computation and 
communication for a function. Many researchers have made 
good contribution, which can be summarized in three stages: 
(1) finding a good abstraction of various interfaces, (2) 
generating wrappers efficiently and automatically, and (3) 
refining the architecture of system functional models  

In the stage (1), VCI [4] and OCP-IP [5] defined generic 
protocol between the internal core part of a component IP 
and its bus wrapper. In figure 1, VCI and OCP-IP can be the 
interface between FA and its bus slave wrapper. The bus 
interface controller, internal buffers and on-chip memory 
controllers are the wrappers in this category. 

In the stage (2), methods for wrapper generation or 
synthesis were studied. Y. Hwang et. al. [2] proposed a 
method for generating communication wrappers from the 
timing diagram. They showed that synthesized wrappers are 
more efficient in terms of delay and area comparing to the 
generic wrappers and bridges. 

In the stage (3), the refinement-based system design is an 
important issue in the design automation. F. Gharsalli, A. 
Jerraya et. al. [7,8] proposed an MPSoC design methodology. 
The computation part of the function is captured as a virtual 
component (VC), which is mapped onto architectural 
components: processors, memories and ASIC IP cores. Then, 
the architectural components are integrated with generic 
wrappers. S. Abdi, D. Shin, D. Gajski [9] proposed a 
communication synthesis tool, which is based on their own 
refinement-base design environment where they capture the 
communication function as a channel and refine it using a 
protocol library, which is a template set for the channel 
implementation.  

III. Refinement-based Design Environment 

The refinement-based design approach is a top-down 
system-level design methodology, in which the system level 

functions are first captured at a higher abstraction level. A 
system function should be divided into computation and 
communication functions. Hereafter, a communication 
function is called as a channel. After each system-level 
function is captured, each of its computation functions or 
channels is refined into a more concrete implementation step 
by step by making a certain architectural decision  such as 
HW-SW partitioning, types of processors, types and sizes of 
on-chip memories, and the number of ASIC cores or 
embedded FPGAs.  

Computation functions and channels of a system-level 
function should be captured separately with the hints from 
the refinement-based design environment.  Because the 
channels such as FIFOs, arrays, and buses are commonly 
used in the system modeling, we provide them as a primitive 
library. The functional model shown in Figure 2 is for the 
component design example described in Section II, which 
includes six computation functions, three FIFO channels and 
a memory channel. Each computation function and channel 
is connected to the others through abstract interfaces 
regardless of their architectures or implementations. 
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Figure 2. System Function Model and Partial Refinement

In our refinement-based design flow, a system-level 
function model is integration of user-defined computation 
functions with selected channels. A system implementation 
process can be seen as channel template replacement and 
high-level synthesis (or manual re-description) of the 
computation functions to a lower abstraction level. Our 
refinement-based design environment provides the following 
three types of hints to make modeling and refinement easy: 
(1) hints for primitive channels that are the most frequently 
used for communication.  
(2) hints for abstract interfaces for function modeling, RTL 
and S/W implementation.  
(3) hints for architecture templates for refining the primitive 
channels.

These hints are represented with communication 
architecture template trees (CATtrees). Next, we explain 
primitive channels, abstract interfaces and channel templates 
before explaining the CATtrees  

A. Primitive Channels 

Models of computation like Kahn Process Network 



(KPN) and Synchronous Dataflow Network (SDF) provide a 
well-defined set of abstract communication functions or 
channels. Although an abstract FIFO, which is the 
fundamental communication function of KPN and SDF, can 
model any point-to-point communication, it is too abstract to 
model an application function with the abstract FIFO. It is 
not easy to refine a MoC-modeled system function with it. 
Therefore, we replace it into the following four types of 
primitive channels, which are more concrete and widely 
used in the real application function modeling and system 
implementation. 

(1) FIFO channels 
A FIFO channel has two primitive functions: a blocking 

read and a blocking write, which are sufficient for capturing 
a high-level FIFO function. For the step-by-step architecture 
refinement, however, we additionally defined four additional 
functions such as peek, clear, more and sync. A peek 
function just checks the data without data retrieval, which is 
useful for H/W RTL implementation. A clear function 
initializes the FIFO channels. A more function returns true if 
there is more data to be written, which is useful to determine 
when to destroy a dynamically allocated channel. A sync 
function returns true if the written data is transferred to the 
reading counterpart, which is relevant when the refined 
architecture of a FIFO channel has intermediate buffers. The 
FIFO channel provides two abstract interfaces: 
abs_fifo_write interface and abs_fifo_read interface.  

(2) Variable channels 
A variable channel provides read and write functions, 

which do not have data synchronization. This channel is 
very useful in modeling memories updated infrequently. 
This channel provides abs_var_read and abs_var_write 
interfaces.  

(3) Array channels 
An array channel is a set of variable channels that is 

pointed by an index. Its primitive functions include index 
read and write functions. Although the array and variable 
channels are not required in the most MoCs, they are very 
useful in modeling and refining architecture. An array 
channel is an abstraction of memories including on-chip and 
external memories. Therefore, it is not easy to write a RTL 
model without using them in many cases. This channel 
provides abs_array_read and abs_array_write interfaces.  

(4) Bus channels 
A bus channel can perform point-to-point data transfers 

through a shared medium. In the top-down approach, a bus 
channel is not necessary in the function modeling. In the 
bottom-up approach, however, the bus channels are the most 
important communication pattern to connect components. In 
our refinement-based design environment, the bus channel is 
not used in function modeling but many partially refined 
(PR) channels, which will be explained later, have bus 
interfaces. For example, the PR channels and adapters 
related to the S/W have bus interfaces because RISC 

processors have a bus master interface.

B. Abstract Interfaces 
In the system function model, an abstract interface is a 

boundary between a computation function and a channel. 
For computation of a function, its abstract interfaces mean 
primitive functions that it can use. For communication of a 
function, its abstract interfaces mean primitive functions that 
it must implement. Therefore, the abstract interfaces are a 
key to separate computation and communication for a 
function. An abstract interface is active for computation 
while it is passive for communication. An active interface of 
a computation model is connected to a passive interface of 
the channel. An abstract interface can be refined into three 
concrete interfaces: a TLM one for function capture and 
transaction level simulation and a RTL one for RT-level 
implementation, and a SW API one for S/W implementation.  

C. Partially Refined Channels (PR channels)
Partially refined (PR) channels are used to refine 

primitive channels such as FIFOs, variables and arrays by 
making certain architectural decisions.  

(1) Bus-FIFO Channels 
A bus-FIFO is two FIFO channels that are connected 

using a bus channel, which can be refined to a Bus Master 
Write FIFO (top) and a Bus Master Read FIFO (bottom) as 
depicted in Figure 3(a). Although the internal architecture of 
a bus-FIFO is complex, its function is the same with that of 
the abstract FIFO channel.  

(2) Cached Array Channels 
A cached array channel is an array channel that contains a 

cache. An array channel is often refined into an external 
memory. However, an external memory has long latency and 
limited bandwidth. Therefore, an array channel can first be 
refined to a cached array channel that is connected to an 
external memory as depicted in Figure 3(b).  

(3) Bus-Memory Channels 
Some memories are shared with many computation 

functions. A bus-memory is an abstraction of shared 
memories that has a bus slave interface. A bus-memory 
channel can be refined to either an on-chip memory (left) or 
external SDRAM memory (right) as depicted in Figure 3(c). 

(4) Channel Adapters
There are two types of channel adapters, which are 

interface and abstraction adapters. An interface adapter is 
used to connect two different types of channels. For example, 
a Bus Master Read FIFO channel shown in Figure 3(a) 
contains a bus_fifo_sender channel and a bus_fifo_receiver 
channel. These two PR channels are interface adapters. They 
adapt a FIFO channel to a bus channel. An abstraction 
adapter connects two channels in different abstraction levels. 
For example, a TLM-to-RTL adapter and a RTL-to-TLM 
adapter can connect a transaction-level model of 
computation to a RTL model of channel for a function or 



vice versa.  

D. Channel Templates 
Channel templates are configurable implementations of 

the primitive and PR channels, which are actually 
parameterized source files or generators. There are three 
templates for each channel: TLM, RTL, and S/W ones. A 
channel template has template parameters. To instantiate a 
channel instance, the value of the template parameters must 
be determined.
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E. Communication Architecture Template Trees 
A communication architecture template tree (CATtree)  

for an abstract channel is the collection of a primitive 
channel, an abstract interface and a set of templates for the 
abstract channel. We named CATtree because the 
architectures are expanded like a tree as shown in Figure 4.   

Representing the architectural information for an  
abstract channel with its CATtree is an effective and 
integrated way of realizing the orthogonalization of function 
and architecture for communication. Providing a set of 
CATtrees can clearly expose what are communication 
functions and what are not for the designer. Once a 
communication function for a system function is captured 
with the CATtree for an abstract channel, refinement of that 
channel is guaranteed by its corresponding templates.  

Computations for a system function are modeled with the 
TLM APIs in the CATtree and they are integrated to build its 
system function model. This system function model is the 
starting point of further implementation. Channels in the 
system function model are refined by replacing it with 
templates of the CATtree. Computations can be refined to 
RTL or S/W by high-level synthesis tools or by hand. Each 
computation and communication can be refined 
independently exploiting the abstract interfaces and adapters. 
Note that we do not cover the refinement of computation in 
this paper. 
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IV. Reusable Component IP Design 

Refinement-based design is an alternative to the 
reuse-centric design methodology. However, the 
platform-based design methodology is still attractive to the 
design teams who have systems that have been 
pre-integrated and verified. Therefore, reusable components 
are still important matters for them. However, conventional 
component IPs, which are designed to have standard 
interfaces, have limited reusability. Therefore, we introduce 
a new method of component IP design and delivery that 
utilizes our refinement-based design environment. 

In this method, a component designer captures the 
component function using the TLM interfaces in the 
CATtrees. At the same time, he or she should model its test 
drivers. The test drivers generate stimulus to the captured 
component function and validate its response from the 
captured function model. By connecting the component 
function and its test-drivers with the TLM templates in the 
CATtrees, the component design obtains a testbench for 
validation, verification and interface refinement of the 
component IP. CATtree-based function capture of the 
component IP is relatively easier than bus-aware function 
modeling because he or she can concentrate on the 
computation and ignore communication related details.  

The component designer can describe a RTL model of the 
computation function with the RTL interfaces. An 
abstraction adapter is inserted when a RTL computation 
function is connected with transaction-level channels and 
test drivers. Most of the designers have difficulty in 
designing a component because of the bugs related to its 
interfaces. In our approach, the designer can ignore the 
details about communication, which greatly reduces the 
complexity of the RTL design. For a computation function, 
we define the set of its transaction-level model, RTL model, 
and testbenches as the augmented deliverable package of its 
reusable component IP. 

 System designers can configure the communication part 
of the component IPs with our refinement-based design 
environment. The system designers replace an abstract 
channel with a more concrete one by using the CATtrees. 
Because they replace the channels instead of adapting the 
interfaces, the communication parts of the test drivers are 
also refined together. Therefore, without any manual 



modification of the testbenches, the system designers can 
execute them to estimate the performance of the component 
IP and to verify the refined model at each refinement step.  

V. An H.264 VLD Component Design 

We designed a new H.264 decoder system by reusing a 
system design shown in Figure 5. We decided to design and 
integrate a new dedicated hardware IP for the VLD 
operation. We followed the platform-based design 
methodology, utilizing the proposed method to design a 
more reusable VLD component IP as follows. 

Figure 5. H.264 decoder SoC Platform 

A. Reusable H.264 VLD Component IP design 
A component designer designed an H.264 VLD 

component IP with the design flow we described. First, he 
captured its computation function and developed its test 
drivers, which took about a. week (Figure 6). The 
computation consists of a VLD core, an nC calculation block 
and a NAL decoder, which has 4 FIFO interfaces and 1 array 
interface. The VLD core decodes Exp-Golomb and CAVLC 
codes. The nC calculation block determines which mapping 
table is used in the VLD core to decode a CAVLC code. The 
NAL decoder eliminates the emulation prevention codes in 
the bit-stream.  

After modeling the VLD function, he manually described 
its RTL model in HDL with the RTL interfaces of the 
CATtrees. The RTL model can decode an Exp-Golomb code 
in 1 cycle, a 2x2 chroma DC in 10 cycles (average) and 4x4 
residual decoding in 30 cycles (average). We synthesized the 
RTL model using the Synopsys DesignCompilerTM and the 
estimated gate count was 8277 gates at 5 ns delay in 0.18 um 
process technology. He finished both description and 
verification of the VLD RTL model in two days. It was 
relatively faster than its function modeling because of the 
two reasons. First, we described only a computation part in 
details. In general, the communication part is more complex 
and error-prone than the computation part. In our approach, 
however, potential communication errors are eliminated by 
exploiting the simple abstract interfaces of the CATtrees. 
Second, in the verification of RTL description we reused all 
the test models used for function modeling.  

B. Communication Refinement and System Integration 
A system designer configures the communication part of 

the H.264 VLD computation and integrates it to an existing 
platform. Here we present two implementations of the VLD 

IP in the H.264 decoder for QCIF (176*144) and HDV 
(1280*768) images, respectively.  

(1) VLD decoding for QCIF images 
In decoding QCIF images of 15fps, both computation and 

communication loads are low. The system designer decided 
to configure the VLD computation to have only an AHB 
slave interface for easier system integration. Because 
Flexible Macroblock Ordering (FMO) in the H.264 baseline 
profile, he also decided that the array channel connected to 
nC calculation sub-block has only 44 indices. In this 
configuration, the memory size is 220 bits and he finally 
decided to refine the array channel into a register array. 
Figure 7(a) shows refinement steps. The total gate count of 
the communication part was 12,150 gates 

(2) VLD decoding for HDV images 
In decoding HDV images of 30 fps, both computation and 

communication loads are very high. Additionally the H.264 
decoder must support the FMO feature. Because the FMO 
feature requires all nC values of a frame, ARRAYnC must 
have at least 92160 indices, which is too big to be 
implemented with registers or on-chip memories. Thus, he 
decided to configure the H.264 VLD computation with the 
following five refinements: 

FIFOCMD to a 8 depth Bus-Master Write channel and 
refine FIFOVLD to a 8 depth Bus-Master Read channel  
a bus slave interface is shared by FIFOCMD and FIFOVLD.
FIFOITQ to a dedicated register FIFO. 
FIFOSTRM to a memory FIFO that have a cache with 16 
registers of 8-bit width 
ARRAYnC to an external memory with cache.  

Figure 7(b) shows the refinement steps according to the 
decisions listed above. The total gate count of the 
communication part was 10,559 gates. 
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VI. Conclusions 

We proposed an effective design approach to enhancing 
the reusability of component IPs. In this approach, we 
re-defined the roles of component and system designers. In 
designing a component IP, a component designer captures its 
computation and its communication in an abstract way while 
a system designer refines its communication part with our 
refinement-based design approach. We also proposed an 
augmented component IP deliverable package according to 
the redefined roles of the component and system designers.  
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Our refinement-based design environment introduced a 
concept of the Communication Architecture Template Tree 
(CATtree), which can clearly separate computation function 
and communication architecture. Moreover, it provides 
generic interfaces to model both of them. After designing a 
VLD component for H.264, we found that the concept of the 
CATtree is effective for the communication refinement.  

With this proposed approach, the component designers 
can design computation functions easily and the system 
designer can explore a larger design space with the help of 
the CATtree.We are now developing an H.264 decoder 
system with our design environment to exploit the full 
power of the CATtree. We will cover the refinement of 
computation later in another paper.
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(b) H.264 VLD Component IP configuration for HDV Decoding
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