
PowerViiiiP: SoC Power Estimation Framework at Transaction Level

Abstract - In this work, we propose a SoC power estimation

framework built on our system-level1 simulation environment.

Our framework provides designers with the system-level power

profile in a cycle-accurate manner. We target the framework to

run fast and accurately, which is enabled by adopting different

modeling techniques depending on the power characteristics of

various IP blocks. The framework can be applied to any target

SoC design.

I. Introduction

System-level design paradigm has been widely adopted to

cope with the ever-increasing complexity of System-on-Chip

(SoC) design. The high simulation speed at the system level

allows designers to explore the huge design space of modern

SoC designs.

Design space exploration of modern SoC devices usually

deals with three design constraints: performance, area and

power consumption. The former two constraints have been

relatively well understood in the traditional design flow.

However, the market needs for low power devices have

introduced the third constraint, power consumption. Since

typical SoC devices have many components heavily

interacting with each other, it is essential to examine the

power consumption of each component in the system

context [1]. The power profile generated by independent

simulation of each component may mislead designers to a

local power optimal design. This means that power

estimation should also be performed at the system level.

In order to perform system-level power estimation, we
need to build power models of all components. However, a
salient feature of SoC is that it has many heterogeneous
components with varying power characteristics, ranging
from very regular structures such as on-chip SRAM to
irregular custom IP blocks such as video codec. This makes
it extremely difficult to derive a single modeling
methodology that can cover every component constituting a
SoC device. Thus, different approaches are adopted for
different components. In any cases, however, we need to
consider the relationship among the following three factors:

1 In this paper, we will use the term transaction level and system level

interchangeably to represent their union.

simulation speed, estimation accuracy and modeling effort.
Estimation accuracy is often compromised for simulation

speed and modeling effort. By exploiting the heterogeneity
of SoC, we can make a good trade-off among them. For
example, components with little power variation can employ
simple power models to reduce the modeling effort while
boosting the simulation speed. For custom IP blocks, we also
need to take into account the effort to build the system-level
simulation models. Unlike processor cores and bus fabrics
whose models are provided by the vendors, legacy custom
IP blocks that exist in the form of RTL usually do not have
system-level models.

In this paper, we present a system-level power estimation

framework, PowerViP, built on our system-level simulation

framework, ViP [2]. In PowerViP, different power modeling

techniques are employed for each component: processor
cores, bus fabrics, custom IP blocks and memories.

Moreover, for custom IP blocks, an RTL to ViP model

translation technique is adopted to reduce the modeling

effort. PowerViP provides designers with useful power

information fast and accurately as well as easy modeling
capability.

The paper is organized as follows. Section II describes
related work and Section III presents our contributions. The
details on power modeling of the processor cores, bus
fabrics, and custom IP blocks are presented in Section IV, V,
and VI, respectively. The memory power model used in this
work is briefly described in Section VII. Section VIII
presents the integrated framework based on the separately
modeled and validated components. Section IX concludes
the paper.

II. Related Work

Extensive studies dealing with the problem of power
estimation have been proposed, ranging from circuit-level
modeling to behavioral modeling approaches [1, 3]. While
highest accuracy is achieved at the lowest level, estimation
speed degrades significantly as we move down to lower
levels. Therefore, it is crucial to derive a method that
performs the best trade-off between estimation accuracy and
speed.

Co-simulation based approach is one way to achieve a

Ikhwan Lee1, Hyunsuk Kim1, Peng Yang1, Sungjoo Yoo1, Eui-Young Chung2,
Kyu-Myung Choi1, Jeong-Taek Kong1, and Soo-Kwan Eo1

1CAE center, System LSI division, Semiconductor Business, Samsung Electronics, Co. Ltd.

San 24 Nongseo-Dong, Giheung-Gu, Youngin, Gyeonggo-Do, 449-711, Korea

e-mail: {ikhwan.lee, hyunsuk71.kim, peng.yang, sungjoo.yoo, kmchoi, jkong, sookwan.eo}@samsung.com

2School of Electrical and Electronic Engineering, Yonsei University
134 Sinchon-Dong, Seodaemun-Gu, Seoul, 120-749, Korea

e-mail: eychung@yonsei.ac.kr

good trade-off between accuracy and speed. In [1], multiple
power simulation engines work in a concurrent and
synchronous manner. In an effort to minimize the speed
degradation caused by co-simulation, they propose several
speed-up techniques. In our work, we adopt a model
translation technique to completely eliminate the overhead
of co-simulation.

A dynamic power model selection scheme at the system
level is proposed in [3], where computation effort among
different SoC components is allocated at run-time for the
best estimation time and accuracy trade-off.

Most of the work on power modeling has focused on
power modeling of individual components such as
processors, bus fabrics, memories, and custom IP blocks.

The first work on processor power modeling is reported in
[4]. Their model quantifies instruction base energy and
inter-instruction energy effects to enable fast software
energy estimation. Wattch [5] and SimplePower [6] are two
well-known power estimation tools in academia. A power
model tailored for the Intel XScale processor is proposed in
[7]. Their power model is based on module activities, where
each module has its power equation embedded in
Sim-XScale simulator. The power equations are constructed
using transistor level schematics of functional units and a
high-level view of transistor gate and drain capacitances. A
software power estimation tool, JouleTrack, is presented in
[8]. They propose a power characterization methodology
that avoids explicit power characterization for each
differentiated instruction class.

Bus system power modeling and estimation has been
addressed in many different flavors, from the simple analytic
model to the detailed gate-level switching activity based
model [9 - 12]. Several papers are published to address the
problem at a higher abstraction level, the system level [13 -
15]. In practice, most current commercial design flows
utilize RTL and gate-level power estimation tools. However,
due to their poor efficiency, it is impractical to apply them at
the early stage of design, when many different architecture
options have to be explored. Most of the work considers
only the global wire, which is comparatively easy to model,
but not the communication architecture components. This is
incomplete because, as pointed out in [16], for complex
communication network, the global wire only contributes a
small potion of total power consumption.

Most of the existing work on IP power modeling takes
RTL level approach. A few suggest behavioral-level
methods; however, their accuracy is too low because of the
mismatch between the behavioral description and the real
implementation. The estimation accuracy becomes even
lower when we employ an analytical method. Therefore,
significant amount of work has been done on RTL macro
modeling of IP power consumption [17]. Although the
procedure to build an RTL power macro model is clear, it is
still difficult to automate the process.

III. Contributions

System-level simulation at the early design phase has

become essential to search for optimal system architecture
and also to enable early software development. We have

developed a cycle-based simulation framework, called ViP,

which can perform concurrent, cycle-accurate and
synchronous system-level simulation [2].

On top of ViP, we build power models for each major SoC

component to estimate the power consumption as well as the
performance in a synchronous manner. Note that since the

ViP framework provides synchronous activity information,

the power models can provide more accurate power numbers
in the system context [1].

Our goal in PowerViP development is three-fold:

 maintain the target accuracy level
 keep the simulation overhead incurred by power
estimation low

 make the power models easy to be customized to an
arbitrary target design, since it is used at the
system-level design phase where architecture
exploration is performed

To achieve the conflicting goal of building a fast, accurate
and easy-to-build power model, we take a component-based
approach. As shown in Fig. 1, heterogeneous components of
a SoC can be categorized into processors, bus fabrics,
custom IP blocks, and memories. To achieve the best
trade-off between simulation speed and accuracy, we apply
different modeling techniques for each component
depending on the power characteristics.

SDRAM SRAM

CPU D$

TCMI$

Codec

DSP

Bus
Peripherals

Peripherals

Peripherals

Memory controller

Bus

Fig. 1. A System-on-Chip design.

The procedure to build PowerViP follows three steps in

general. First, we set up a gate-level or RTL power analysis
environment per IP component to extract (characterize) its
power values. Next, we build a power model with the
extracted power numbers. Finally, we annotate the power
model into the system-level model of the IP component to
generate power numbers during system-level simulation. For
seamless adaptation of the power model to technology
transitions, e.g., 130nm to 90nm or high speed to low power
process, we automate this process by provisioning scripts
that perform the power characterization and model
parameter extraction steps.

In the following sections, we propose new approaches

applied to a SoC platform in detail in the following order:
processor cores, bus fabrics, custom IP blocks, and
memories. Power model development procedure and its
validation result are separately presented in each section.

IV. ARM926EJ-S Processor Power Model

Development

The ARM926EJ-S processor is widely adopted in SoC as
a controller as well as a small data processing engine; thus,
we first embark on power modeling of the processor.
Currently, power modeling of the ARM1176 processor is
being conducted using the methodology described herein.

A. ARM926EJ-S architecture

The ARM926EJ-S processor has a five stage pipelined
data path and a Harvard cache architecture. The size of the
caches can be from 4KB to 128KB. The ARM926EJ-S
processor also has a fill buffer (FB) that keeps the most
recently fetched cache line.

In the ARM926EJ-S processor, any instruction that
modifies the program counter (such as a branch, or ‘MOV
pc, r0’) causes a non-sequential instruction accesses on the
next cycle. An instruction access by ‘PC increment by 4’
that crosses the cache line boundary also causes a
non-sequential access. In Fig. 2 (a), a non-sequential (NS)
access causes all four cache tag memories and data
memories to be accessed along with the fill buffer. Whereas
a sequential access (SEQ) causes only the data memory
where the data is located is accessed as in Fig. 2 (b). In Fig.
2 (c), if the data is accessed from the fill buffer, there in no
access to the cache.

For data caches, load multiple (LDM) and store multiple
(STM) instructions support sequential accesses. LDR and
STR instructions incur non-sequential accesses.

B. ARM926EJ-S power states

We separate the processor power model into two parts:
Processor core model and cache model. This separation
comes from two observations. One is that caches can be
configured differently (in terms of size, associativity, etc.)
for various applications. Thus, one single model will not
give an accurate estimation. The other observation is that the
power consumption of caches gives a large variation. In the
ARM926EJ-S processor, the cache power consumption
ranges from 3% up to 60% of the total power. Therefore, we
decide to model the core logic block and cache memory
separately.

Processor core: two simple power states

We observe that the core logic can be in one of the two
states: busy state and idle state (stalled by interlocks). There
are numerous studies on processor power modeling, where
more complex instruction level power states are identified [4,
7, 8]. However, in our work, we find that the two-state core
power model gives more than 95% of the core power

estimation accuracy for all of our benchmarks. On the other
hand, one state model performs very poorly with its
accuracy level of less than 70% for some benchmarks.
Thus, we adopt the two-state power model for the processor
core.

Activity-based coarse-grain cache power model

Most of the previous work on cache power modeling has
exploited circuit-level information such as bit line and word
line capacitive loads to generate flexible cache power
models [5-7]. In industry, cache memories use memory
compiler-generated SRAMs, where power values for each
module are also provided for each type of read and write
access. Thus, our cache power is modeled as a sum of
power values for all accessed SRAM modules. For SRAM
modules not accessed during the cycle, their static power
values are added.

The ARM926EJ-S cache access behavior can be
categorized into three different types as shown in Fig. 2. In
power perspective, a non-sequential access consumes more
than four times of power than a sequential access, since the
cache power is the sum of dynamic power of all activated
modules (tag memories and data memories) and static power
of inactive modules. It dictates that in the ARM926EJ-S
caches, non-sequential accesses and sequential accesses
should be differentiated for accurate power estimation.

$ read miss
$ read hit NS

tag data

tag data

tag data

$ read hit Seq

FB hit Seq

fill buffer

fill buffer

fill buffer

(a)

(b)

(c)

$ read miss
$ read hit NS

tag data

tag data

tag data

$ read hit Seq

FB hit Seq

fill buffer

fill buffer

fill buffer

(a)

(b)

(c)

Fig. 2. ARM926EJ-S cache activity patterns.

Table I lists our identified data cache states and their

corresponding module activities and power equations. In the
table, Tr (Tw) and Dr (Dw) represent module power numbers
for Tag read (Tag write) and Data read (Data write),
respectively, obtained from our in-house memory compiler.
The states are identical for the instruction cache except that
there is no cache write hit or miss states. In this work, we
ignore the power consumed by fill buffers.

Instructions and data are accessed from the fill buffer until
it is evicted to the cache in two cycles (as shown 1st
write-back and 2nd write-back in Table I) by the following
cache line fetched in from the bus. Instruction fill buffer
(I-FB) hit counts accounts for approximately 10% of the
instruction cache hit counts in our dhrystone benchmark. If

an instruction fill buffer hit is encountered and the PC
increments by 4, then it is I-FB sequential read, where
negligible amount of power is consumed by the fill buffer.
Therefore, it should be distinguished if the data is read from
the cache or fill buffer to estimate power accurately.

TABLE I. Activity-based cache power model.

Cache states Module activity
Power

Equation

sequential
(cache) read

1 data read Dr

non-sequential
(cache) read / read
miss

4 tag reads and
4 data reads

Tr*4+
Dr*4

Data cache write hit
4 tag reads, 1
tag write and 1
data write

Tr*4+Tw
+Dw

Data cache write

miss
4 tag reads Tr*4

FB -> cache write
(1st write-back)

1 tag write and
4 data writes

Tw+Dw*
4

FB -> cache write
(2nd write-back)

4 data writes Dw*4

sequential FB read - -

C. Power (re-)characterization flow

Power consumption is a complex function of many
parameters. Depending on the quality of implementation, the
same RTL can result in very different power values at the
gate-level netlist. For example, two of our sample designs of
the ARM926EJ-S show as much as twice power difference
at the same frequency level, even though they are
implemented with the same technology library. This implies
that ‘characterize once’ approach might not hold true in real
applications.

In general, power characterization at the gate level
proceeds as follows: (1) obtain the signal toggle information
from gate-level simulation, (2) estimate the gate-level power
from the toggle information using power libraries, and (3)
calculate per-state power values using the estimated power
information. If the power characterization is performed
manually for each different gate-level netlist, it will be long,
tedious, and error-prone task.

To reduce the characterization efforts, we set up an
automated characterization flow as shown in Fig. 3, where
designers can characterize power values repeatedly without
investing much effort. The characterized power values are
simply read by our simulator annotated with the power
model to produce software power profiles. Note that the
power model itself does not need any modification. We find
that the power model itself is valid for different
implementations of the same RTL.

Fig. 3 shows our power characterization flow. We first
build a gate-level and RTL co-simulation template, where an
RTL testbench with a simple bus and memory module drives
the simulation with the ARM926EJ-S gate-level netlist of
interest to generate the cycle-by-cycle signal toggle
information as well as signal traces to infer the power states,
using dhrystone benchmark. The toggle information is then

fed into our in-house gate-level power estimation tool to
generate cycle-by-cycle power values. The per-state power
value is obtained by averaging the estimated cycle-by-cycle
power values. All the aforementioned steps are performed
automatically without any user intervention. The obtained
per-state power value is finally annotated into our power
simulator. We use the characterization flow to obtain the
core power states in our power model. Note that the cache
power model is activity-based and its SRAM module power
value is provided by our memory compiler.

ARM926
16/16kB

Post-layout
gate-level netlist

100MHz

void ARM926_ISS() {
while(1) { // clock++
…

…
}

ViiiiP Model

AHB Memory

RTL Testbench

Power State
Monitor

Gate level – RTL Cosimulation Model Template
clk

power
state

s1 s2 s2 s2 s1 s1 s3 s4

Simulation

Switching activities

power
cons.

0.15 0.12 0.10 0.11 0.13 0.10 0.28 0.21

S1: 0.13 S2: 0.11 S3: 0.25 S4: 0.21

Per-state
average

clk

Power values

Power modelsPower += S1_power;

Power model abstractionPower model annotation

Power extraction

ARM926
16/16kB

Post-layout
gate-level netlist

100MHz

void ARM926_ISS() {
while(1) { // clock++
…

…
}

ViiiiP Model

AHB Memory

RTL Testbench

Power State
Monitor

Gate level – RTL Cosimulation Model Template
clk

power
state

s1 s2 s2 s2 s1 s1 s3 s4

Simulation

Switching activities

power
cons.

0.15 0.12 0.10 0.11 0.13 0.10 0.28 0.21

S1: 0.13 S2: 0.11 S3: 0.25 S4: 0.21

Per-state
average

clk

Power values

Power modelsPower += S1_power;

Power model abstractionPower model annotation

Power extraction

Fig. 3. Power characterization flow.

D. Power model validation

Our simulation with five benchmarks shows 93%~98% of
average power estimation accuracy. Fig. 4 shows
cycle-by-cycle estimation result for a short code segment. It
can be seen that the estimated power values closely track the
power values measured at the gate-level. Regarding the
power estimation speed of our simulator, it performs
approximately 1600 times faster than gate-level estimation.

Measured vs. Estimated

cycle no.

n
o
rm

a
liz

e
d
 p

o
w

e
r

Measured

Estimated

Fig. 4. Cycle-by-cycle estimation accuracy.

� �

 Component-based Transaction-level Power
Modeling for ARM AXI Bus System

The development of today’s semiconductor technology

provides unprecedented computing speed that is shifting the
IC design bottleneck from computation capacity to
communication bandwidth and flexibility. The global
communication becomes so difficult that more and more

designs turn to SoC architecture where a set of local blocks
are connected with a communication network. Recent
research [19] shows that the on-chip interconnect
architecture not only has significant impact on the system
performance and energy efficiency, it is also a significant
source of power consumption, which is still increasing with
the complexity of the system. Managing and optimizing
power of this important SoC component require a detailed
understanding of its characteristics.

A. AXI Bus architecture

The AMBA AXI 3.0 protocol is targeted at
high-performance, high-frequency system designs and
includes a number of features that make it suitable for a
high-speed sub-micron interconnects.

AXI 3.0 supports simultaneous read and write accesses.
Both READ and WRITE transactions have their independent
address and data channel. It also supports split transaction,
which means the address/command phase and the data phase
are separated. In addition, if configured to use ID, the AXI
3.0 compliant masters will assign an ID number to each
outgoing transaction and check the ID of each in-coming
response. This enables the implementation of multiple
outstanding transactions and out-of-order transaction
completion, which provide efficient communication for a
wider variety of slaves.

The AXI 3.0 protocol only defines the interface between a
master and a slave. To connect multiple masters and slaves,
ARM suggests the new bus architecture, ARM Configurable
Interconnect (ACI). Different from its predecessor AMBA
AHB, ACI uses crossbar architecture to provide much higher
communication bandwidth. Whenever there is no conflict,
e.g., two masters sending commands to one slave at the
same cycle, the transactions issued by one master will not be
interfered or obstructed by other masters.

B. Power modeling

What ACI differs from other bus system, e.g., AHB, is its
crossbar architecture, which allows parallel bus accesses
from multiple masters and introduces complex competition
and coupling effects. For instance, the power consumption
of one master at one specific cycle is not only decided by the
communication between this master and the bus, but also
depends on the communications conducted by other masters.
To make it even worse, each master can do READ and
WRITE in parallel. All these result in a huge number of
states which are needed to represent the behavior of the bus.

To counter the problem, we have developed our
transaction level bus power estimation method using a
component based approach. The crossbar consists of
components such as decoders, routers and arbitrators. The
basic idea is to identify, at each basic state, which
component is active and how much power it consumes. At
run time, the bus state can be looked as a combination of
these basic states, e.g., master 1 is decoding the address
while master 2 is sending write data. Hence, to model all the

bus states, we need only to characterize the limited number
of basic states.

Power model extraction

The model extraction environment is shown in Fig. 5. We
use the ARM ACI toolset to configure the bus interconnect,
generate the RTL code and synthesize the circuit. Then the
gate-level RTL code is simulated and an in-house tool is
used to collect the gate-level switching activity information.
Based on this information, the gate-level power number
could be collected. The Cadence eVC environment is used to
feed in random test sequences into the calibration flow.

Extraction of the power model of each component:

Given an ACI bus configuration, i.e., the number of
masters, the number of slaves and other parameters such as
data width, we synthesize the gate-level RTL code for our
flow. During this step, we consider only the case when one
master is communicating with one slave and configure the
eVC to generate 8 random test sequences:

 READ with burst length of 1, 4, 8 and 16 words,
respectively

 WRITE with burst length of 1, 4, 8 and 16 words,
respectively

AXI parameters

configure &
generate
AXI bus

s
im

u
la

tio
n

RTL
descriptions

of system
modules

T
ra

n
s
a
c

tio
n

-le
v
e
l te

s
tb

e
n

c
h

(V
e

ris
ity

e
V

C
)

synthesis

gate-level
power

estimation
(CubicPower)

tech.
lib

global wire
length

estimation

repeater
insertion

capacitance
estimation

global wire
power

estimation
(CubicPower)

module gate counts

w
ire

 le
n

g
th

vectors

AXI RTL

bus logic and interface
power estimation

bus line power
estimation

Fig. 5. The power model extraction environment.

This will rule out the coupling between multiple parallel

transactions and allow us to focus on the behavior of each
ACI component under all the basic transaction states.

Coupling effect:

To account for the coupling effect caused by multiple
masters and slaves, another set of coefficients are introduced.
We separate the coupling contribution into two items, one is
related to the number of bursts the bus transferred during a
period, and the other is related to the number of active cycles
in that period.

With our eVC automatic test sequence generation
environment, we systematically vary the number of active
masters and slaves, and calibrate the gate-level bus power
consumption under each situation. From these results, linear
regression is applied to extract the coupling coefficients.

Power estimation

After extracting the transaction level bus power model,
we apply the model to a sequence of bus transactions to
estimate the bus power consumption of the bus during that
period. The input can be at both the transaction level and the
signal level.

For each bus cycle, we count the number of READ related
transactions and the number of WRITE related transactions
being performed by the bus. From them, we could know the
specific state of each component and their basic power
number accordingly. Thus we obtain the basic power
estimation, without considering the coupling effect. To
compensate the coupling effect when there are more than
one active master and slave, a simple linear equation is
applied. By accumulating the power estimation of each bus
cycle for a period of time that we are interested in, we could
finally obtain the total power consumption during that
period.

C. Model validation

In this section, we validate our model by presenting the
estimation result of our transaction level power model with
various bus configurations. Our experiment set-up is as
follows. Given a configuration, such as frequency, data
bandwidth, the number of masters, and the number of slaves,
we use Synopsys Design Compiler to synthesize the bus
architecture. Then our model extraction flow is applied to
extract all the coefficients, based on the gate-level
simulation result.

Fig. 6 summarizes our result for a 4x4 ACI bus, i.e., a
configuration with four masters and four slaves. Due to the
large amount of data, we present only the result when the
burst length is 8 words. The other results with different burst
length show similar characteristics.

In Fig. 6, the horizontal axis shows the number of active
masters and slaves, which represents how many masters are
really communicating with how many slaves. The vertical
axis gives the estimation error of our transaction-level power
model from the gate-level simulation. The results of the
estimation with coupling effect and without coupling effect
are separately plotted as well as the type (read/write) of the
transactions. We can see clearly that the estimation error is
significantly reduced if the coupling effect is taken into
account. The maximum error drops from 16.24% to 5.57%,
and the average error drops from 6.23% to 1.87%.

We have applied our power model to four different bus
configurations. For all our experiments, the maximum error
against the gate-level estimation is less than 10%, and on the
average, it is below 5%.

The power model integrated into the ViP runs more than

100 times faster, compared with gate-level power estimation.

VI. Automatic Generation of Power-Annotated ViP

Models for Custom IP Blocks

Power modeling and estimation of custom IP blocks

encounter two major challenges. First, a large amount of

�
�
�
�
�

� �
� �
� �
� �
� �

� �
� � � � � � � � � � � � � � � � � � � �

���� !
�� "#

�$$"
$% &

') * + , . / 0 � 0 1 2 � � 3 ' 5 6) , . / 0 � 0 1 2 � �') * + , . / � 0 1 2 � � 3 ' 5 6) , . / � 0 1 2 � �

Fig. 6. Power estimation result, burst length 8.

work is required to build the high-level simulation model.

This becomes critical when we consider frequently updated

IP blocks with low reusability. Second, IP blocks with

irregular power characteristics make it difficult to

characterize their power consumption.

We propose a practical technique to meet the challenges

for custom IP blocks. Our target is to perform a good

trade-off between estimation accuracy and speed while

minimizing the effort spent on power and ViP modeling.

High accuracy is achieved by employing RTL power macro

modeling method, and the speed overhead of co-simulation

is completely eliminated by using automatic RTL to ViP

model translation technique. The automatic RTL to ViP

model translation technique additionally enables designers to

minimize the ViP modeling effort. The overall flow of our

technique is illustrated in Fig. 7. Three rectangular boxes

represent the state-of-the-art EDA technologies that we

employ: RTL to ViP translator, transaction-level simulation

platform, and simulation based RTL power estimator. We

will elaborate them in the following sections.

RTL design

ViiiiP Model

RTL to ViiiiP

translator

Test bench

Transaction level
simulation platform

Simulation
trace

Simulation based
RTL power estimator

Technology
library

RTL power
macro model

Characterized
power value

Annotation

PowerPower--annotatedannotated
VV iiiiiiiiP modelP model

RTL design

ViiiiP Model

RTL to ViiiiP

translator

Test bench

Transaction level
simulation platform

Simulation
trace

Simulation based
RTL power estimator

Technology
library

RTL power
macro model

Characterized
power value

Annotation

PowerPower--annotatedannotated
VV iiiiiiiiP modelP model

Fig. 7. Overall custom IP power modeling flow.

A. ViP model and RTL power macro model generation

Two intermediate outputs of our flow are circled in dotted

circles. The ViP model is generated from RTL description

by using an RTL to ViP translator, and the RTL power

macro model is built by extracting representative state

machine variables from the RTL source code. At the end of

the flow, two intermediate outputs are merged to make the

power back-annotated ViP model.

B. System-level simulation

System-level simulation is performed to obtain simulation

traces that are required for the power characterization step.

Since the generated ViP model contains all the structural

information of the original RTL design, it is possible to

dump RTL switching activities to output VCD files. This

enables the simulation based power estimation. The inputs to

this step are the generated ViP model and testbench. Since

most of the IP blocks have a general interface such as a

standard bus protocol, the testbench can usually be reused.

C. Simulation based RTL power estimation

As mentioned previously, we use an RTL power estimator

for characterization. The inputs to this step are as follows:

the simulation trace in VCD format, the original RTL design,

the technology library, and the initial RTL power macro

model. The RTL power estimator reads in the technology

library file and quickly synthesizes the original RTL design

into a gate-level netlist in the target technology. The

simulation trace is applied to this gate-level netlist to

perform gate-level power estimation. As a result, the initial

power macro model is back-annotated with characterized

power numbers. The initial RTL power macro model must

be evaluated at this point to confirm that it satisfies the

accuracy constraint. If the accuracy of the initial model is

too low, the RTL power macro model should be refined and

this step must be repeated.

This step can be easily substituted with a gate-level

estimation tool if the gate-level netlist and testbenches are

available. That is, we can come back to this point after the

RTL freeze for more accurate power estimation.

D. Integration of the power model into the ViP model

The last step of our flow is the integration of the power

macro model with the ViP model. Since the power macro

model is built by extracting representative state machine

variables, it is easy to automatically embed the power macro

model into the ViP model.

We implement a monitor inside the ViP model, which

tracks the list of signals representing the power macro model.

Then the power consumption of the IP is reported according

to the signal values during simulation. That is, the power

back-annotated ViP model can estimate the power

consumption on a cycle-by-cycle basis by monitoring its

internal switching activities.

E. Validation of the flow

The validation of our custom IP power modeling

technique is in progress. For an 80K-gate IP block that we

have tested so far, the modeling effort in terms of

man-month is reduced by an order of magnitude, and the

accuracy is 80% as compared to the gate-level estimation.

VII. Memory Power Models

Various types of memories are used for different purposes.
SRAM and SDRAM are two of the most commonly used
memories in a SoC system. In our framework, SRAM is
easily modeled with energy per read, write, or idle
operations. In most cases, power variation caused by the
data dependency of each operation can be ignored. For
SDRAM, we adopt the widely accepted approach, which is
well-described in [18]. Read, write, activate, precharge, and
refresh power are separately calculated using the DC
characteristic numbers provided in the SDRAM datasheets.
Our experience shows that these models are sufficient to
explore the power consumption in the system context.

VIII. PowerViP: A SoC Power Estimation

Framework

The separately prepared power models are integrated in

the ViP framework. In this study, we only present the results

for the processor and AXI bus fabrics since the validation of
the custom IP power modeling flow is in progress We build a
system composed of an ARM926 processor, an AHB-to-AXI
converter, AXI bus fabric, a memory controller, and an
external SDRAM. A set of test bench suite is run on the
ARM processor; we believe that this configuration conforms
to our goal of providing a feasibility of our study.

PowerViP produces profile information in HTML format

for all the functions run on the ARM926EJ-S processor. As
shown in Fig. 8, power consumption and other statistics for
each function are reported, e.g., total cycles and bus
utilization. Note that the power numbers in Fig. 8 are
normalized with respect to the highest power consuming
function. It is sorted in decreasing order of total cycles as
shown in the second column. From the result, designers can
find which function is most power-hungry and start
cycle-by-cycle power and performance simulation at the
beginning of the function.

Fig. 8. Reported profile in HTML format.

Fig. 9. Graphical power profile in time axis.

Fig. 9 shows the power consumption of the ARM926EJ-S
processor and the AXI bus fabrics graphically (on the lower
window) as a series of functions such as strcpy and
dhryStone are executed (on the upper window). The power
graph shows distinct pattern for each function. In this way,
the exact cycle when a power surge occurs can be
pin-pointed. Then the debugger can trace the source code
line-by-line from the pin-pointed cycle to identify the cause
of the power surge. For example, if high instruction cache
power consumption is attributed to the power surge, it can
be monitored if the instruction cache misses keep occurring
at the time, or if the tight loop body incurs frequent branches,
causing power-hungry non-sequential instruction cache
accesses. All the necessary information is reported in the
simulator in a synchronized fashion.

IX. Conclusions

We tackle the heterogeneity of SoC by adopting different
power modeling techniques for different components.
Simple power models are used for components that have
simple power characteristics, i.e., SRAM and processor core.
We build an activity-based coarse-grain power model for the
cache memory and develop a component-based approach for
bus fabrics. For custom IP blocks, we use RTL power macro

modeling combined with the RTL to ViP model translation

technique. On the average, our power models for
ARM926EJ-S and AXI bus fabrics show 93% and 95% of
estimation accuracy respectively as compared to gate-level
estimation.

Although our custom IP power modeling strategy still
needs to be validated, we are confident that with the help of

PowerViP, system designers can explore various

architectural choices at the early design phase to find a
power-optimal design before the RTL freeze. Currently, our
design teams are adopting the framework at the early design
exploration stage. We plan to enrich the power model
database by providing power models for other commonly
used processor core families, bus fabrics, custom IP blocks,
and memory devices.

References

[1] M. Lajolo, A. Raghunathan, S. Dey, and L. Lavagno,

“Cosimulation-based power estimation for system-on-chip design,”
IEEE Trans. on VLSI Systems, vol. 10, no. 3, pp. 253-266, 2002.
[2] Samsung Electronics, “Samsung's ViP design methodology

reduces SoC design time up to 40 percent,”
http://www.samsung.com/Products/Semiconductor/News/SystemL
SI/SystemLSI_20040914_0000069677.htm.

[3] N. Bansal, K. Lahiri, A. Raghunathan, and S. T. Chakradhar,
“Power Monitors: a framework for system-level power estimation
using heterogeneous power models,” in Proc. Int. Conf. on VLSI

Design, 2005, pp. 579-585.

[4] V. Tiwari, S. Malik, and A. Wolfe, “Power analysis of
embedded software: a first step towards software power
minimization,” IEEE Trans. on VLSI systems, vol. 2, no. 4, pp.
437-445, 1994.

[5] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: a
framework for architectural-level power analysis and
optimizations,” in Proc. ISCA, 2000, pp. 83-94.
[6] W. Ye, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin,

“The design and use of SimplePower: a cycle-accurate energy
estimation tool,” in Proc. DAC, 2000, pp. 340-345.
[7] G. Gontreras, M. Martonosi, J. Peng, R. Ju, and G.-Y. Lueh,
“XTREM: a power simulator for the Intel XScale® core,” in Proc.

LCTES, 2004, pp. 115-125.
[8] A. Sinha and A. Chandrakasan, “JouleTrack: a web based
tool for software energy profiling,” in Proc. DAC, 2001, pp.
220-225.
[9] J. Y. Chen, W. B. Jone, J. S. Wang, H.-I. Lu, and T. F. Chen,

“Segmented bus design for low power,” IEEE Trans. on VLSI

systems, vol. 7, no. 1, pp. 25-29, 1999.
[10] C.-T. Hsieh and M. Pedram, “Architectural power
optimization by bus splitting,” IEEE Trans. Computer Aided

Design, vol. 21, no. 4, pp. 408-414, 2002.
[11] P. P. Sotiriadis and A. P. Chandrakasan, “A bus energy
model for deep submicron technology,” IEEE Trans. on VLSI

systems, vol. 10, no. 3, pp. 341-350, 2002.

[12] L. Benini, A. Macii, M. Poncino, and R. Scarsi,
“Architecture and synthesis algorithm for power-efficient bus
interfaces,” IEEE Trans. Computer Aided Design, vol. 19, no. 9,
pp. 969-980, 2000.

[13] M. Caldari et al., “System-level power analysis methodology
applied to the AMBA bus,” in Proc. DATE, 2003, pp. 32-37.
[14] U. Neffe et al., “Energy estimation based on hierarchical bus
models for power-aware smart card,” in Proc. DATE, 2004, pp.

300-305.
[15] A. Bona, V. Zaccaria, and R. Zafalon, “System level power
modeling and simulation of high-end industrial network-on-chip,”
in Proc. DATE, 2004, pp. 318-323.

[16] K. Lahiri and A. Raghunathan, “Power analysis of
system-level on-chip communication architectures,” in Proc.

CODES+ISSS, 2004, pp. 236-241.
[17] S. Ravi, A. Raghunathan, and S. Chakradhar, “Efficient RTL

power estimation for large designs,” in Proc. Int. Conf. on VLSI

Design, 2003, pp. 431-439.
[18] Micron Technology, “Calculating DDR memory system
power” http://www.micron.com/products/dram/ddrsdram/tech

note.html,
[19] R. Kumar, V. Zyuban, and D. Tullsen, “Interconnections in
multi-core architectures: understanding mechanisms, overheads
and scaling”, in Proc. ISCA, 2005, pp. 408-419.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

