

Abstract— Use of Single Instruction Multiple Data (SIMD)

functional units enables multimedia systems to exploit

parallelism to a higher degree resulting in significant system

performance improvements. While implementation of whole

SIMD system functionality for an application results in wastage

of area resources, we have observed that for a specific

multimedia application, we only need to implement a

customized SIMD unit that is a subset of whole SIMD standard

implementation. Based on this study, we have proposed an

extension to the traditional system design and synthesis flow by

integrating a methodology of SIMD unit Synthesis. Our system

synthesizes a customized SIMD unit along with an extended

instruction set and generates an equivalent version of assembly

code for the application using the extended instruction set. The

results of area and performance obtained by experimenting over

our implementation of AltiVec compatible customized SIMD

units show the effectiveness of our approach.

Index Terms— SIMD Synthesis, HW/SW Codesign, AltiVec

Architecture, Vectorization

I. INTRODUCTION

 Multimedia standards such as MPEG-1, MPEG-2,

MPEG-4, MPEG-7, JPEG2000, and H.263 put challenges on

both hardware architectures and software algorithms for

executing different multimedia processing jobs in real-time.

To meet the high computational requirements of emerging

media applications, current systems use a combination of

general-purpose processors accelerated with DSP (or media)

processors and ASICs performing specialized computations.

However, benefits offered by general-purpose processors in

terms of ease of programming, higher performance growth,

easier upgrade paths between generations, and cost

considerations argue for increasing use of general purpose

processors for media processing applications [1]. The most

visible evidence of this trend has been the SIMD-style media

instruction-set architecture (ISA) extensions announced for

most high-performance general purpose processors (e.g.,

AMD’s 3DNow! [2], Motorola’s AltiVec [3], Intel’s

SSE1/SSE2 [4], Sun’s VIS, HP’s MAX, Compaq’s MVI and

MIP’s MDMX).

Research work done over the study of area constraints of

SIMD shows that implementation of whole SIMD units is

very expensive in terms of area and energy requirements

[5],[6]. On the other hand, research also indicates that

multimedia applications don’t use all the components of an

SIMD unit and hence implementation of many parts of SIMD

units can be avoided to save area and energy without

affecting the speed. As a result, synthesis of customized

SIMD units to optimize the system resources is suggested.

Synthesis of customized SIMD units is somehow equivalent

to an Application Specific Instruction Set Processor (ASIP)

synthesis problem and recently, an increasing interest in this

direction has been observed [7],[8],[9][10],[11],[12]. While

ASIP synthesis can be considered a generalized SIMD

synthesis problem, a very few methodologies to synthesize

SIMD units in particular have been proposed [13],[14]. [14]

uses the optimization of Control Data Flow Graphs (CDFG)

of the application code for extraction of SIMD instructions.

A drawback of this approach is that SIMD pattern

recognition through CDFG doesn’t completely exploit the

possible parallelism of a program hence speedup because of

SIMD usage remains very limited. [13] uses step by step

SIMD instruction decomposition for a manually vectorized

program to get an area efficient processor core, but it doesn’t

take into account the standard SIMD based systems with

complex architectures hence it doesn’t represent a real world

scenario of a DSP application using SIMD instructions.

That’s why we have implemented standard AltiVec unit

being used as a coprocessor with a PowerPC 405 processor

to keep in mind the practical aspects of SIMD while proving

the concept behind our work.

There are also some commercial tools available for

synthesis of extensible processors. Commercial examples of

extensible processors include HP Laboratory and

STMicroelectronics' Lx [15], Altera's NIOS [16] and

Tensilica's Xtensa [17]. In Altera’s NIOS architecture,

extensible instruction set is obtained by introducing the

instructions in the already existing pipeline of the processor

which increases the critical path length of the processor. Just

like Xtensa, our methodology emphasizes on the use of

coprocessor that extends the existing instruction set with one

more advantage that we are using well known Instruction Set

Architecture (ISA) based on PowerPC architecture.

Customized SIMD Unit Synthesis for System on Programmable Chip – A

Foundation for HW/SW Partitioning with Vectorization

 �Omar Hammami

UEI, ENSTA

Paris, 75739

Tel : 33(0)1 45 52 54 60

Fax : 33(0)1 45 52 83 27

 e-mail :hammami@ensta.fr

Muhammad Omer Cheema

UEI, ENSTA

Paris, 75739

Tel : 33(0)1 45 52 54 60

Fax : 33(0)1 45 52 83 27

 e-mail : cheema@ensta.fr

Based on the above discussion, this paper presents a

methodology for the application specific synthesis of SIMD

units for digital signal processing applications. Given an

application program written in C or Assembly language and a

set of application data, our methodology synthesizes an RTL

description of an SIMD based coprocessor and the extended

instruction set along with the modified assembly language

program capable of running over synthesized system. As a

case study, we experimented over PowerPC architecture

based AltiVec [3] units and the results obtained indicate the

effectiveness of our methodology. These results testify to the

high potential of the SIMD computation paradigm in the

synthesis of high performance and low-power application

specific hardware architectures.

Rest of the paper is organized as follows: Section II gives

an introduction to PowerPC/AltiVec and presents

benchmarking results of multimedia applications outlining

the motivation behind our work. Section III explains the

System Synthesis methodology. Section IV and V describe

the experiment environment and results. Section VI and VII

present conclusions and future work.

II. STUDY OF UTILIZATION OF ALTIVEC UNITS

AltiVec is a floating point and integer SIMD instruction

set designed and owned by Apple Computer, IBM and

Motorola (the AIM alliance), and implemented on versions

of the PowerPC including Motorola's G4 and IBM's G5

processors. AltiVec is a trademark owned solely by

Motorola, so the system is also referred to as Velocity Engine

by Apple [18] and VMX by IBM. Fig. 1 explains the various

components of an MPC 7400 system that consists of a G4

processor having an AltiVec extension.

Fig.1 PowerPC G4 Architecture

Vector Permute Unit (VPU) Vector Integer Unit (VIU),

Vector Complex Integer Unit (VCIU) and (Vector Floating

Point Unit) VFPU are part of the AltiVec unit. Vector

permute unit arranges the data to make it usable by vector

instructions. VIU, VCIU and VFPU are used to execute

vector integer, vector complex integer and vector floating

point instructions. Other components shown in Fig.1 are part

of general-purpose PowerPC and are used to execute non-

SIMD instructions.

Our first experiment was to measure the utilization of

these vector units for certain applications. For that we

developed a few multimedia test benches for AltiVec enabled

G4 system. We used profiling and simulation tools like

Shark, Amber, MONster [19] and SimG4 [20] to calculate

the usage of various components in the system. We used

different versions of filters used in image processing keeping

in mind that each of the filters had a different level of

vectorization so that it can reflect realistic results on AltiVec

unit usage during the application execution.

 For an image of size 320x240, when applied to various

versions of filter program having different vectorization

level, results in Table 1 were obtained. Looking at the Table

1, we can see that even if the branch prediction and cache

performances remained in reasonable limits, usage of most of

the AltiVec components was very poor. As a matter of fact,

for our application that dealt with integers parts only, floating

point unit was never used. Looking at the statistics, we can

claim that most of the SIMD resources are underutilized (or

un-utilized in some cases).

TABLE 1

Statistics of G4 Components Usage for Multimedia Applications

One important thing to note is that researchers in [21]

also got the similar results and concluded that in the dynamic

instruction stream of media workloads, 85% of the

instructions are not performing computation but are

load/stores, loop/branches and address generation

instructions. They observed an SIMD efficiency ranging only

from 1 to 12%.

 Filter

v1

Filter

v2

Filter

v3

Filter v4

Instruction/Cycle 0.8615 0.8483 0.6703 0.8465

FXU1 Idle Time 53.28% 58.44% 45.46% 54.09%

FXU2 Idle Time 76.36% 70.41% 64.18% 75.89%

FPU Idle Time 100 % 100 % 100 % 100 %

VAUS IdleTime 99.27% 99.32% 100 99.25%

VAUC Idle Time 93.90% 93.23% 92.83% 93.77%

VAUF Idle Time 100 % 100 % 100 % 100 %

VPU Idle Time 100 % 91.87% 100 % 90.76%

SYS Idle Time 91.90% 92.52% 97.98% 91.74%

LSU Idle Time 56.01% 61.16% 49.73% 67.42%

DL1 Hit Rate 98.52% 98.72% 97.18% 98.36%

IL1 Hit rate 99.82% 99.84% 99.54% 99.82%

Branch Predict. 93.45% 93.45% 94.91% 93.45%

Using the GCC 4.0.0 [22] and VAST [23] vectorizing

tools, we vectorized various benchmarks and obtained even

worse results in terms of AltiVec unit utilization due to the

facts that vectorizing capabilities of existing tools are limited

and also that even if an application is well vectorized, most

of the components in SIMD remain underutilized as was

observed in Table 1.

Based on above observation, we conclude that it is

preferable to include only those components of SIMD in

application specific embedded systems that are not

underutilized or un-utilized to have a better area and energy

consumption of a system: hence the basic motivation behind

our work.

III. ADAPTIVE GENERATION OF SIMD UNITS

 Our SIMD synthesis flow consists of following sub tasks:

a) Vectorization

b) Static and Dynamic Profiling

c) SIMD AltiVec module Generation

d) Real Time Execution of the Application

e) Repetition of above steps until a set of possible

solutions is obtained. Best solution matching the

system requirements is chosen.

Fig. 2 System Design Flow

a. Vectorization

As mentioned in first section, input to the system is an

application written in C or Assembly language. First step

in the synthesis process is to vectorize the application.

During this phase, vectorizing compiler detects the

possible vectorizing options. We have defined

equivalence classes of AltiVec and PowerPC

instructions. Equivalence classes represent the possible

replacement of an instruction with a set of instructions

performing the same function. As a result, use of some

instructions can be avoided which makes it possible for

us to choose alternative components of AltiVec or

PowerPC to test the behavior of the system for a

program modified using an equivalent class. As a very

simple example of the concept of equivalence classes,

let’s say that we have a vadduwm instruction that adds a

vector of four elements having 32-bit size each. RTL

description of the SIMD unit is implemented in a module

that handles unsigned addition for byte, half word and

word elements. Let’s suppose that we want to generate a

program version that doesn’t contain vadduwm

instruction. An obvious reason for such decision can be

that the vadduwm is executed only a few times during

the whole execution of the program while module

inserted inside the system due to its inclusion adds

significant amount of energy and area requirements. So

we can use the concept of equivalence classes and

replace this vadduwm instruction with four PowerPC add

instructions used for addition of 32 bit unsigned

elements to generate such a version. This example

mentions the replacement of a vector instruction with its

equivalent PowerPC instructions. There are some cases

where it seems more beneficial to use another vector

instruction to replace a vector instruction (i.e. multiply

accumulate operation with two different operations of

multiply and then accumulate for vectors). This concept

of equivalence classes, when introduced in a vectorizing

compiler gives a very large system design space

depending on the set of vector instructions being used

and their replacement methodology. Ideally, to get an

optimal solution, an automatic system design exploration

algorithm can be applied. Or alternatively, system can be

manually tested for various vectorized versions of the

program and the system configuration matching the area

and speed constraints can be chosen as is done in this

article. Energy based optimization has not been

performed in this article although it remains an optional

part of the design flow and we are in the process of

developing a methodology to have good energy

consumption estimates.

b. Static Analysis and Profiling Results

 In this phase, we analyze the application and study

the various aspects related to instruction set used and

its usage. During this process, frequency, timing and

repetition patterns of instructions are studied. This

helps the system designer to capture the properties of

the system and to exploit the inherent parallelism in

various ways. Information obtained during this step is

also helpful in automatic generation of customized

AltiVec module.

c. AltiVec Module Generation

During this phase, the system automatically

generates the VHDL description of a suitable AltiVec

module that consists of only those components which

are needed to execute the specific version of the

program generated in step A. The modules not going

to be used by program are ignored and kept out of the

hardware synthesis process. System is ready to be

executed in real time at the end of this step.

d. Real time execution over Virtex- 4 FPGA

In this phase, application is run over an FPGA on

which customized SIMD unit is synthesized. We

preferred actual execution of the application over

FPGA instead of simulation to avoid the accuracy

limitations of the simulation and to prove our idea in a

concrete manner. Execution also speeds up the

process as simulation of applications has proven to be

very slow in many cases. Results of area and energy

consumption and number of cycles taken by

application are obtained at the end of this phase.

All of the above steps are repeated several times and results

for area, energy and speed are obtained for corresponding

configurations. Based on the results obtained and the system

requirement, suitable SIMD system and corresponding

extended instruction set is chosen for the application.

IV. EXPERIMENTAL SETUP

In this section, we briefly explain the experimental setup

for the hardware environment. We have used Xilinx Virtex-4

FX platform devices to execute the application in real time

and get the execution results. Virtex-4 consists of a PowerPC

405 processor: a 32-bit IBM RISC processor at its core along

with various peripheral component interfaces. Virtex-4

FPGA is the newest of Virtex FPGA [24] series and is the

first FPGA that provides an option to connect a coprocessor

with PowerPC processors with the help of an APU (Auxiliary

Processor Unit). And this feature was the major reason for us

to choose Virtex-4 to perform the experiments.

Fig.3 PowerPC with APU Interface

As shown in the Fig. 3, Virtex-4 APU allows a designer

to extend the native PowerPC 405 instruction set with custom

instructions for execution by an FPGA Fabric Coprocessor

Module (FCM). An APU-enhanced system enables tighter

integration between an application-specific function and the

processor pipeline, making the APU implementation superior

to, for example, a bus peripheral. When an instruction

arrives, the processor and the APU decode it simultaneously.

If the instruction is meant for the APU and the FCM, the

APU relays it to the FCM.

 The Embedded Development Kit (EDK) is a widely used

tool to program Xilinx FPGAs. EDK 7.1 is the latest version

and the only way to develop the Virtex-4 FPGA based APU

enabled systems. EDK includes the IPs of Processor Local

Bus (PLB), On-Chip Peripheral Bus (OPB), Block RAM

(BRAM) controllers that were reused in our system design.

(Integrated Software Environment) ISE 7.1 is used to

synthesize the system and get the area requirements of the

system.

Fig. 4 Xilinx ML403 FPGA Resources

All the experiments have been performed over Xilinx

ML403 [25] board that allows designers to investigate and

experiment with features of the Virtex™-4 family of FPGA.

V. EVALUATION RESULTS

We tested our methodology over two sets of applications.

Smaller application using lesser number of vector

instructions was a matrix transpose application. It consisted

of only five vector instructions being used including lvx and

stvx. For a larger application, we developed a set of image

processing filters which used several vector instructions.

Fig. 5 represents the area taken by various components of

AltiVec on a Virtex-4 FPGA. Some components like Vector

Permute Units and the modules related to shift instructions

take as much as one thousand slices, which is more than 20

% of total ML403 area, while most of the modules are less

expensive in terms of area requirements. An obvious reason

for this fact is that the shift capabilities in AltiVec

instructions are more than that of a “barrel shifter” since

every block of the vector can be shifted by a different value.

For standard implementation of the VPU, whole “cross bar”

functionality has to be implemented to keep it compatible to

standards resulting in adding a lot of RTL logic. Area might

have been smaller for shift instructions if same shift value

was used for every data component in the instruction.

Similarly, the instruction with saturation takes up more area

because of additional logic for implementation of saturation

functionality.

Repeating the methodology mentioned in previous

sections, results of area and energy consumption obtained by

system synthesis and real time execution of matrix transpose

application are summarized in Table 2. Results show that a

speed up of up to 5.2 can be obtained with an area cost of

89% of FPGA total area. Configuration 5 is using scalar only

code while other configurations use one or more vector

instructions. Configuration 1 is using all possible vector

instructions in the program resulting in maximum area and

maximum speed up.

TABLE 2

Area vs. Speedup for Matrix Transpose Program

Config. No. FPGA

Area

Time (cycle) Speedup over

Non-SIMD

Code

Config. 1 89 3 171 944 5.2

Config. 2 83 5 275 383 3.1

Config. 3 75 6 357 824 2.6

Config. 4 70 7 188 232 2.3

Config. 5 28 16534 108 0

Fig. 6 graphically represents the above table. As expected,

in all the configurations, area and execution time tradeoff is

clearly visible.

Area vs Number of Cycles

89%
83%

28%

75%70%

0

5

10

15

20

0% 20% 40% 60% 80% 100%

Percentage of FPGA Area/Slices

M
il
li
o
n
 C
y
c
le
s

Fig. 6 Area vs. Speedup Tradeoff for Matrix Transpose Program

Similarly, various AltiVec configurations of a filter

automatically generated by our customized AltiVec

generation tool depending on extended instruction set being

used and corresponding area and speedup results are shown

in Table 3. An image of size 500x500 was used as data input

for the results in Table 3. It is important to note at this point

that implementation of vector register bank and vector

permute unit took more than 40 percent of the area available

over ML 403 board because of the reasons mentioned in the

beginning of this section. Rest of the area utilization was

dependent on the vectorizing compiler’s decision to

select/reject certain instructions in a specific SIMD

configuration.

 Fig. 5 Area of AltiVec Modules in Virtex-4

TABLE 3

 Area vs. Speedup for Average Filters

Config. No. FPGA

Area

Time (cycle) Speedup over

Scalar Code

Config. 1 84% 29 812 080 2

Config. 2 86% 33 087 428 1.8

Config. 3 89% 23 853 953 2.8

Config. 4 89% 34 237 811 1.8

Config. 5 92% 12 388 586 4.9

Config. 6 78% 35 770 207 1.7

Config. 7 28% 60 810 431 0

Fig. 7 shows a tradeoff between area and speedup for the

given filter application. We observe that various solutions

based on the system requirements are possible. For example,

if focus is on the execution speed, configuration 5 is the

required solution. If area is to be minimized, among the

SIMD based solutions, configuration 6 is the best option.

Other configurations represent the tradeoff between these

two extremes.

Area Vs Number of Cycles

84%

86%

89%

89%

92%

78%

0

5

10

15

20

25

30

35

40

75% 80% 85% 90% 95%

Percentage of FPGA Area/Slices

M
il
li
o
n
 C
y
c
le
s

 Fig. 7 Area vs. Speedup Tradeoff for Average Filters

To test the impact of system performance for different

image sizes, one configuration was chosen and images of

various sizes were applied to the application. Results

obtained are summarized in the Fig. 8. The results show that

optimal solution obtained for one image size might not be

optimal for other image sizes and speed up can be lesser if

images of smaller sizes are used. In ideal case, for each data

size/type, system should be synthesized again to get an

optimized solution.

Image Size vs. Speed up

0

1

2

3

4

5

6

32x32 128x128 256x256 512x512 800x800

Image Size

S
p
e
e
d
 u
p

Fig. 8 Image Size vs. Speedup Tradeoff for Average Filters

Needless to say that, generally more speedup has been

observed for large data sizes showing the suitability for

SIMD for large data applications.

VI. DISCUSSION AND EXTENSIONS

In a broader view, this paper lays out the foundation for a

HW/SW partitioning scheme, which includes vectorization.

The target platform of such a scheme is described in Fig. 9.

This single processor platform is composed of: (1) an IBM

PPC 405 processor connected to an IBM CoreConnect

infrastructure (2) peripherals (3) a custom Altivec compatible

SIMD unit (4) hardware accelerators: this whole platform

being the result of a HW/SW partitioning scheme. In such a

platform HW/SW partitioning scheme needs to add a new

dimension in the design space exploration with the inclusion

of vectorization resulting in SIMD units in the system.

Fig. 9 Target platform with vectorization

This flow accepts as input a C application from which a

call graph is extracted and profiled. Compute intensive

functions having SIMD like patterns are vectorized. A design

space exploration algorithm similar to [26] is applied which

partitions each function in either: (1) software without

vectorization (2) vectorized software with the custom

associated SIMD unit (3) or pure hardware as a hardware

accelerator. The resulting configuration is generated,

synthesized on an FPGA platform and executed. The actual

number of cycles of the execution as well as area values

resulting from the synthesis/place and route step are fed back

to the DSE engine for a new exploration until the constraints

are met.

Fig. 10 HW/SW/SIMD Partitioning Flow

VII. CONCLUSIONS

In this paper, we have proposed a methodology for the

synthesis of customized SIMD units. Concept of equivalence

class between/among SIMD and general-purpose processor

instructions has been introduced to create a system design

space for synthesis of customized SIMD units. As a case

study, we have used AltiVec based SIMD unit along with

PowerPC405 and generated a suitable architecture for a

specific image processing application along with the

extended instruction set and a modified application that can

execute itself over the synthesized hardware. Results of area

and application execution time show that significant

efficiency improvement is achieved through the use of our

SIMD based synthesis methodology.

REFERENCES

[1] K. Diefendorff and P. K. Dubey. How multimedia workloads will

change processor Ddesign. In IEEE Micro, pages 43–45, Sep 1997.

[2] S. Oberman et al, “AMD 3DNow! Technology and the K6-2

microprocessor”, In HOTCHIPS10, 1998.

[3] M. Phillip et al,”AltiVec technology: Accelerating media processing

across the spectrum”, In HOTCHIPS10, Aug 1998.

[4] S. K. Raman, V. Pentkovski, J. Keshava,“ Implementing streaming

SIMD extensions on the Pentium III processor”. In IEEE Micro,

volume 20(4), pages 47–57, July-August 2000

[5] Schmookler M, Putrino M, Roth C, Sharma M, Mather A, Tyler J,

Nguyen H.V, Pham M.N, Lent J “A low-power, high-speed

implementation of a PowerPC microprocessor vector extension”,14th

IEEE Symposium on Computer Arithmetic, p.12, 1999

[6] Linlay Gwennap, “AltiVec vectorizes PowerPC forthcoming

multimedia extensions improve on MMX ” Microprocessor report,

Volume 12, No. 6, May 11, 1998

[7] T. M. Conte et al., “Challenges to combining general-purpose and

multimedia processors.”, In IEEE Computer, pages 33–37, Dec 1997.

[8] D. Goodwin and D. Petkov, “Automatic generation of application

specific processors”, In Proc. of the 2003 International Conference on

Compilers, Architecture, and Synthesis for Embedded Systems, pages

137-147, 2003.

[9] Slingerland N, Smith A.J, “Measuring the performance of multimedia

instruction sets”, IEEE Transactions on Computers, Vol. 51, No. 11,

November 2002 page 1317-1332

[10] P. Brisk, A. Kaplan, M. Sarrafzadeh, “Area-efficient instruction set

synthesis for reconfigurable system-on-chip designs” Proceedings of

Design Automation Conference, 41st Conference on (DAC'04) pp.

395-400,2004

[11] Atasu, K., Pozzi, L., and Ienne, “Automatic application-specific

instruction set extensions under microarchitectural constraints.”,

Design Automation Conf. (DAC), 2003.

[12] P. Ranganatha, S. Adve,N. P. Jouppi , “Performance of image and

video processing with general-purpose processors and media ISA

extensions”, Proceeding of 26th International Symposium on Computer

Architecture, pp-124-135, 1999

[13] N. Togawa, M. Yanagisawa, T. Ohtsuki, “A Hardware/Software

cosynthesis system for digital signal processor cores” IEICE Trans.

Fundamentals, Vol E83-A, NO.11, November 1999

[14] V. Raghunathan, A. Raghunathan, M. B. Srivastave, M. D. Ercegovac,

“High level synthesis with SIMD units”, Proceedings of the 15th

International Conference on VLSI Design (VLSID.02), 2002

[15] P. Faraboschi et al, ”Lx: a technology platform for customizable VLIW

embedded processing”, In ISCA, 2000.

[16] Altera. Nios embedded processor system development. http://

www.altera.com/products/ip/processors/nios/nio-index.html.

[17] R. E. Gonzalez, “Xtensa: A configurable and extensible processor.”

IEEE Micro, 20(2), 2000.

[18] Velocity Engine: http://developer.apple.com/hardware/ve/index.html

[19] CHUD Tools(Amber, Shark, MONster):

http://developer.apple.com/tools/performance/overview.html

[20] SIMG4:http://developer.apple.com/Developer/Documentation/CHUD/

SimG4_Users_Guide.pdf

[21] Talla D, John L, Burger D “Bottlenecks in multimedia processing with

SIMD style extensions and architectural enhancement” IEEE

Transactions on Computers, VOL. 52, NO. 8, AUGUST 2003 page

1015 – 1031

[22] Dorit Nicholas, “Autovectorization in GCC”, GCC Developers’

Summit, pp 105-117, 2004

[23] VAST Code Optimizer, Available:

http://www.crescentbaysoftware.com/vast_altivec.html

[24] Virtex-4 FPGA Handbook August 2004

[25] ML 40x Evaluation Platform User Guide, UG080 (v2.0) P/N 0402337

February 28, 2005, 2004-2005 Xilinx, Inc.

[26] K. Ghali, O Hammami, ”Multiobjective design of embedded processors

on FPGA platform”, ICDCS 2004

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

