
 

Abstract— Use of Single Instruction Multiple Data (SIMD) 

functional units enables multimedia systems to exploit 

parallelism to a higher degree resulting in significant system 

performance improvements. While implementation of whole 

SIMD system functionality for an application results in wastage 

of area resources, we have observed that for a specific 

multimedia application, we only need to implement a 

customized SIMD unit that is a subset of whole SIMD standard 

implementation. Based on this study, we have proposed an 

extension to the traditional system design and synthesis flow by 

integrating a methodology of SIMD unit Synthesis. Our system 

synthesizes a customized SIMD unit along with an extended 

instruction set and generates an equivalent version of assembly 

code for the application using the extended instruction set. The 

results of area and performance obtained by experimenting over 

our implementation of AltiVec compatible customized SIMD 

units show the effectiveness of our approach. 

 
Index Terms— SIMD Synthesis, HW/SW Codesign, AltiVec 

Architecture, Vectorization 

I. INTRODUCTION 

     Multimedia standards such as MPEG-1, MPEG-2, 

MPEG-4, MPEG-7, JPEG2000, and H.263 put challenges on 

both hardware architectures and software algorithms for 

executing different multimedia processing jobs in real-time. 

To meet the high computational requirements of emerging 

media applications, current systems use a combination of 

general-purpose processors accelerated with DSP (or media) 

processors and ASICs performing specialized computations. 

However, benefits offered by general-purpose processors in 

terms of ease of programming, higher performance growth, 

easier upgrade paths between generations, and cost 

considerations argue for increasing use of general purpose 

processors for media processing applications [1]. The most 

visible evidence of this trend has been the SIMD-style media 

instruction-set architecture (ISA) extensions announced for 

most high-performance general purpose processors (e.g., 

AMD’s 3DNow! [2], Motorola’s AltiVec [3], Intel’s 

SSE1/SSE2 [4], Sun’s VIS, HP’s MAX, Compaq’s MVI and 

MIP’s MDMX). 

Research work done over the study of area constraints of 

SIMD shows that implementation of whole SIMD units is 

very expensive in terms of area and energy requirements 

[5],[6]. On the other hand, research also indicates that 

multimedia applications don’t use all the components of an 

SIMD unit and hence implementation of many parts of SIMD 

units can be avoided to save area and energy without 

affecting the speed. As a result, synthesis of customized 

SIMD units to optimize the system resources is suggested. 

Synthesis of customized SIMD units is somehow equivalent 

to an Application Specific Instruction Set Processor (ASIP) 

synthesis problem and recently, an increasing interest in this 

direction has been observed [7],[8],[9][10],[11],[12]. While 

ASIP synthesis can be considered a generalized SIMD 

synthesis problem, a very few methodologies to synthesize 

SIMD units in particular have been proposed [13],[14]. [14] 

uses the optimization of Control Data Flow Graphs (CDFG) 

of the application code for extraction of  SIMD instructions. 

A drawback of this approach is that SIMD pattern 

recognition through CDFG doesn’t completely exploit the 

possible parallelism of a program hence speedup because of 

SIMD usage remains very limited. [13] uses step by step 

SIMD instruction decomposition for a manually vectorized 

program to get an area efficient processor core, but it doesn’t 

take into account the standard SIMD based systems  with 

complex architectures hence it doesn’t represent a real world 

scenario of a DSP application using SIMD instructions.  

That’s why we have implemented standard AltiVec unit 

being used as a coprocessor with a PowerPC 405 processor 

to keep in mind the practical aspects of SIMD while proving 

the concept behind our work.  

There are also some commercial tools available for 

synthesis of extensible processors. Commercial examples of 

extensible processors include HP Laboratory and 

STMicroelectronics' Lx [15], Altera's NIOS [16] and 

Tensilica's Xtensa [17]. In Altera’s NIOS architecture, 

extensible instruction set is obtained by introducing the 

instructions in the already existing pipeline of the processor 

which increases the critical path length of the processor.  Just 

like Xtensa, our methodology emphasizes on the use of 

coprocessor that extends the existing instruction set with one 

more advantage that we are using well known Instruction Set 

Architecture (ISA) based on PowerPC architecture. 
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Based on the above discussion, this paper presents a 

methodology for the application specific synthesis of SIMD 

units for digital signal processing applications. Given an 

application program written in C or Assembly language and a 

set of application data, our methodology synthesizes an RTL 

description of an SIMD based coprocessor and the extended 

instruction set along with the modified assembly language 

program capable of running over synthesized system. As a 

case study, we experimented over PowerPC architecture 

based AltiVec [3] units and the results obtained indicate the 

effectiveness of our methodology.  These results testify to the 

high potential of the SIMD computation paradigm in the 

synthesis of high performance and low-power application 

specific hardware architectures.  

Rest of the paper is organized as follows: Section II gives 

an introduction to PowerPC/AltiVec and presents 

benchmarking results of multimedia applications outlining 

the motivation behind our work. Section III explains the 

System Synthesis methodology. Section IV and V describe 

the experiment environment and results. Section VI and VII 

present conclusions and future work. 

II. STUDY OF UTILIZATION OF ALTIVEC UNITS  

AltiVec is a floating point and integer SIMD instruction 

set designed and owned by Apple Computer, IBM and 

Motorola (the AIM alliance), and implemented on versions 

of the PowerPC including Motorola's G4 and IBM's G5 

processors. AltiVec is a trademark owned solely by 

Motorola, so the system is also referred to as Velocity Engine 

by Apple [18] and VMX by IBM. Fig. 1 explains the various 

components of an MPC 7400 system that consists of a G4 

processor having an AltiVec extension. 

 

 
Fig.1   PowerPC G4 Architecture 

 

Vector Permute Unit (VPU) Vector Integer Unit (VIU), 

Vector Complex Integer Unit (VCIU) and (Vector Floating 

Point Unit) VFPU are part of the AltiVec unit. Vector 

permute unit arranges the data to make it usable by vector 

instructions. VIU, VCIU and VFPU are used to execute 

vector integer, vector complex integer and vector floating 

point instructions. Other components shown in Fig.1 are part 

of general-purpose PowerPC and are used to execute non-

SIMD instructions. 

Our first experiment was to measure the utilization of 

these vector units for certain applications. For that we 

developed a few multimedia test benches for AltiVec enabled 

G4 system. We used profiling and simulation tools like 

Shark, Amber, MONster [19] and SimG4 [20] to calculate 

the usage of various components in the system. We used 

different versions of filters used in image processing keeping 

in mind that each of the filters had a different level of 

vectorization so that it can reflect realistic results on AltiVec 

unit usage during the application execution. 

 For an image of size 320x240, when applied to various 

versions of filter program having different vectorization 

level, results in Table 1 were obtained. Looking at the Table 

1, we can see that even if the branch prediction and cache 

performances remained in reasonable limits, usage of most of 

the AltiVec components was very poor. As a matter of fact, 

for our application that dealt with integers parts only, floating 

point unit was never used. Looking at the statistics, we can 

claim that most of the SIMD resources are underutilized (or 

un-utilized in some cases). 

 
TABLE 1 

Statistics of G4 Components Usage for Multimedia Applications 

 

 

One important thing to note is that researchers in  [21] 

also got the similar results and concluded that in the dynamic 

instruction stream of media workloads, 85% of the 

instructions are not performing computation but are 

load/stores, loop/branches and address generation 

instructions. They observed an SIMD efficiency ranging only 

from 1 to 12%. 

 Filter 

v1 

Filter 

v2 

Filter 

v3 

Filter v4 

Instruction/Cycle 0.8615 0.8483 0.6703 0.8465 

FXU1 Idle Time 53.28% 58.44% 45.46% 54.09% 

FXU2 Idle Time 76.36% 70.41% 64.18% 75.89% 

FPU Idle Time 100 % 100 % 100 % 100 % 

VAUS IdleTime 99.27% 99.32% 100  99.25% 

VAUC Idle Time 93.90% 93.23% 92.83% 93.77% 

VAUF Idle Time 100 % 100 % 100 % 100 % 

VPU Idle Time 100 % 91.87% 100 % 90.76% 

SYS Idle Time 91.90% 92.52% 97.98% 91.74% 

LSU Idle Time 56.01% 61.16% 49.73% 67.42% 

DL1 Hit Rate 98.52% 98.72% 97.18% 98.36% 

IL1 Hit rate 99.82% 99.84% 99.54% 99.82% 

Branch Predict. 93.45% 93.45% 94.91% 93.45% 



 

Using the GCC 4.0.0 [22] and VAST [23] vectorizing 

tools, we vectorized various benchmarks and obtained even 

worse results in terms of AltiVec unit utilization due to the 

facts that vectorizing capabilities of existing tools are limited 

and also that even if an application is well vectorized, most 

of the components in SIMD remain underutilized as was 

observed in Table 1.  

Based on above observation, we conclude that it is 

preferable to include only those components of SIMD in 

application specific embedded systems that are not 

underutilized or un-utilized to have a better area and energy 

consumption of a system: hence the basic motivation behind 

our work.  

III. ADAPTIVE GENERATION OF SIMD UNITS 

    Our SIMD synthesis flow consists of following sub tasks: 

a) Vectorization 

b) Static and Dynamic Profiling 

c) SIMD AltiVec module Generation 

d) Real Time Execution of the Application 

e) Repetition of above steps until a set of possible 

solutions is obtained. Best solution matching the 

system requirements is chosen.  

 

 
Fig. 2   System Design Flow 

 

a. Vectorization 

As mentioned in first section, input to the system is an 

application written in C or Assembly language. First step 

in the synthesis process is to vectorize the application. 

During this phase, vectorizing compiler detects the 

possible vectorizing options.  We have defined 

equivalence classes of AltiVec and PowerPC 

instructions. Equivalence classes represent the possible 

replacement of an instruction with a set of instructions 

performing the same function. As a result, use of some 

instructions can be avoided which makes it possible for 

us to choose alternative components of AltiVec or 

PowerPC to test the behavior of the system for a 

program modified using an equivalent class. As a very 

simple example of the concept of equivalence classes, 

let’s say that we have a vadduwm instruction that adds a 

vector of four elements having 32-bit size each. RTL 

description of the SIMD unit is implemented in a module 

that handles unsigned addition for byte, half word and 

word elements. Let’s suppose that we want to generate a 

program version that doesn’t contain vadduwm 

instruction. An obvious reason for such decision can be 

that the vadduwm is executed only a few times during 

the whole execution of the program while module 

inserted inside the system due to its inclusion adds 

significant amount of energy and area requirements. So 

we can use the concept of equivalence classes and 

replace this vadduwm instruction with four PowerPC add 

instructions used for addition of 32 bit unsigned 

elements to generate such a version. This example 

mentions the replacement of a vector instruction with its 

equivalent PowerPC instructions. There are some cases 

where it seems more beneficial to use another vector 

instruction to replace a vector instruction (i.e. multiply 

accumulate operation with two different operations of 

multiply and then accumulate for vectors). This concept 

of equivalence classes, when introduced in a vectorizing 

compiler gives a very large system design space 

depending on the set of vector instructions being used 

and their replacement methodology. Ideally, to get an 

optimal solution, an automatic system design exploration 

algorithm can be applied. Or alternatively, system can be 

manually tested for various vectorized versions of the 

program and the system configuration matching the area 

and speed constraints can be chosen as is done in this 

article. Energy based optimization has not been 

performed in this article although it remains an optional 

part of the design flow and we are in the process of 

developing a methodology to have good energy 

consumption estimates. 

b. Static Analysis and Profiling Results 

    In this phase, we analyze the application and study 

the various aspects related to instruction set used and 

its usage. During this process, frequency, timing and 

repetition patterns of instructions are studied. This 

helps the system designer to capture the properties of 

the system and to exploit the inherent parallelism in 

various ways. Information obtained during this step is 

also helpful in automatic generation of customized 

AltiVec module. 

c. AltiVec Module Generation 

During this phase, the system automatically 

generates the VHDL description of a suitable AltiVec 

module that consists of only those components which 

are needed to execute the specific version of the 

program generated in step A. The modules not going 

to be used by program are ignored and kept out of the 

hardware synthesis process. System is ready to be 

executed in real time at the end of this step. 



 

d. Real time execution over Virtex- 4 FPGA  

In this phase, application is run over an FPGA on 

which customized SIMD unit is synthesized. We 

preferred actual execution of the application over 

FPGA instead of simulation to avoid the accuracy 

limitations of the simulation and to prove our idea in a 

concrete manner. Execution also speeds up the 

process as simulation of applications has proven to be 

very slow in many cases. Results of area and energy 

consumption and number of cycles taken by 

application are obtained at the end of this phase. 

 

All of the above steps are repeated several times and results 

for area, energy and speed are obtained for corresponding 

configurations. Based on the results obtained and the system 

requirement, suitable SIMD system and corresponding 

extended instruction set is chosen for the application. 

IV. EXPERIMENTAL  SETUP 

In this section, we briefly explain the experimental setup 

for the hardware environment. We have used Xilinx Virtex-4 

FX platform devices to execute the application in real time 

and get the execution results. Virtex-4 consists of a PowerPC 

405 processor: a 32-bit IBM RISC processor at its core along 

with various peripheral component interfaces. Virtex-4 

FPGA is the newest of Virtex FPGA [24] series and is the 

first FPGA that provides an option to connect a coprocessor 

with PowerPC processors with the help of an APU (Auxiliary 

Processor Unit). And this feature was the major reason for us 

to choose Virtex-4 to perform the experiments.  

 

 
Fig.3 PowerPC with APU Interface 

 

As shown in the Fig. 3, Virtex-4 APU allows a designer 

to extend the native PowerPC 405 instruction set with custom 

instructions for execution by an FPGA Fabric Coprocessor 

Module (FCM). An APU-enhanced system enables tighter 

integration between an application-specific function and the 

processor pipeline, making the APU implementation superior 

to, for example, a bus peripheral. When an instruction 

arrives, the processor and the APU decode it simultaneously. 

If the instruction is meant for the APU and the FCM, the 

APU relays it to the FCM. 

 The Embedded Development Kit (EDK) is a widely used 

tool to program Xilinx FPGAs. EDK 7.1 is the latest version 

and the only way to develop the Virtex-4 FPGA based APU 

enabled systems. EDK includes the IPs of Processor Local 

Bus (PLB), On-Chip Peripheral Bus (OPB), Block RAM 

(BRAM) controllers that were reused in our system design. 

(Integrated Software Environment) ISE 7.1 is used to 

synthesize the system and get the area requirements of the 

system.  

 

 

Fig. 4   Xilinx ML403 FPGA Resources 

 

All the experiments have been performed over Xilinx 

ML403 [25] board that allows designers to investigate and 

experiment with features of the Virtex™-4 family of FPGA. 

V. EVALUATION RESULTS 

We tested our methodology over two sets of applications. 

Smaller application using lesser number of vector 

instructions was a matrix transpose application. It consisted 

of only five vector instructions being used including lvx and 

stvx. For a larger application, we developed a set of image 

processing filters which used several vector instructions. 

Fig. 5 represents the area taken by various components of 

AltiVec on a Virtex-4 FPGA. Some components like Vector 

Permute Units and the modules related to shift instructions 

take as much as one thousand slices, which is more than 20 

% of total ML403 area, while most of the modules are less 

expensive in terms of area requirements. An obvious reason 

for this fact is that the shift capabilities in AltiVec 

instructions are more than that of a “barrel shifter” since 

every block of the vector can be shifted by a different value. 

For standard implementation of the VPU, whole “cross bar” 

functionality has to be implemented to keep it compatible to 

standards resulting in adding a lot of RTL logic. Area might 

have been smaller for shift instructions if same shift value 



 

was used for every data component in the instruction. 

Similarly, the instruction with saturation takes up more area 

because of additional logic for implementation of saturation 

functionality. 

Repeating the methodology mentioned in previous 

sections, results of area and energy consumption obtained by 

system synthesis and real time execution of matrix transpose 

application are summarized in Table 2. Results show that a 

speed up of up to 5.2 can be obtained with an area cost of 

89% of FPGA total area. Configuration 5 is using scalar only 

code while other configurations use one or more vector 

instructions. Configuration 1 is using all possible vector 

instructions in the program resulting in maximum area and 

maximum speed up. 

 
 

TABLE  2 

Area vs. Speedup for Matrix Transpose Program 

 

Config. No. FPGA 

Area 

Time (cycle) Speedup over 

Non-SIMD 

Code 

Config. 1 89 3 171 944 5.2 

Config. 2 83 5 275 383 3.1 

Config. 3 75 6 357 824 2.6 

Config. 4 70 7 188 232 2.3 

Config. 5 28 16534 108 0 

 

 

Fig. 6 graphically represents the above table. As expected, 

in all the configurations, area and execution time tradeoff is 

clearly visible. 
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Fig. 6   Area vs. Speedup Tradeoff for Matrix Transpose Program 

 

Similarly, various AltiVec configurations of a filter 

automatically generated by our customized AltiVec 

generation tool depending on extended instruction set being 

used and corresponding area and speedup results are shown 

in Table 3. An image of size 500x500 was used as data input 

for the results in Table 3.  It is important to note at this point 

that implementation of vector register bank and vector 

permute unit took more than 40 percent of the area available 

over ML 403 board because of the reasons mentioned in the 

beginning of this section. Rest of the area utilization was 

dependent on the vectorizing compiler’s decision to 

select/reject certain instructions in a specific SIMD 

configuration. 
 

 

 

 

     Fig. 5 Area of AltiVec Modules in Virtex-4 



 

TABLE 3  

 Area vs. Speedup for Average Filters 

 

Config. No. FPGA 

Area 

Time (cycle) Speedup over 

Scalar Code 

Config. 1 84% 29 812 080 2 

Config. 2 86% 33 087 428 1.8 

Config. 3 89% 23 853 953 2.8 

Config. 4 89% 34 237 811 1.8 

Config. 5 92% 12 388 586 4.9 

Config. 6 78% 35 770 207 1.7 

Config. 7 28% 60 810 431 0 

 

 

Fig. 7 shows a tradeoff between area and speedup for the 

given filter application. We observe that various solutions 

based on the system requirements are possible. For example, 

if focus is on the execution speed, configuration 5 is the 

required solution. If area is to be minimized, among the 

SIMD based solutions, configuration 6 is the best option. 

Other configurations represent the tradeoff between these 

two extremes. 
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 Fig. 7 Area vs. Speedup Tradeoff for Average Filters 

 

 

To test the impact of system performance for different 

image sizes, one configuration was chosen and images of 

various sizes were applied to the application. Results 

obtained are summarized in the Fig. 8. The results show that 

optimal solution obtained for one image size might not be 

optimal for other image sizes and speed up can be lesser if 

images of smaller sizes are used. In ideal case, for each data 

size/type, system should be synthesized again to get an 

optimized solution.  
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Fig. 8 Image Size vs. Speedup Tradeoff for Average Filters 

 

Needless to say that, generally more speedup has been 

observed for large data sizes showing the suitability for 

SIMD for large data applications. 

VI. DISCUSSION AND EXTENSIONS 

In a broader view, this paper lays out the foundation for a 

HW/SW partitioning scheme, which includes vectorization. 

The target platform of such a scheme is described in Fig. 9. 

This single processor platform is composed of: (1) an IBM 

PPC 405 processor connected to an IBM CoreConnect 

infrastructure (2) peripherals (3) a custom Altivec compatible 

SIMD unit (4) hardware accelerators: this whole platform 

being the result of a HW/SW partitioning scheme. In such a 

platform  HW/SW partitioning scheme needs to add a new 

dimension in the design space exploration with the inclusion 

of vectorization resulting in SIMD units in the system. 

 

 
Fig. 9 Target platform with vectorization 

 

This flow accepts as input a C application from which a 

call graph is extracted and profiled. Compute intensive 

functions having SIMD like patterns are vectorized. A design 

space exploration algorithm similar to [26] is applied which 

partitions each function in either: (1) software without 

vectorization (2) vectorized software with the custom 

associated SIMD unit (3) or pure hardware as a hardware 

accelerator. The resulting configuration is generated, 

synthesized on an FPGA platform and executed. The actual 



 

number of cycles of the execution as well as area values 

resulting from the synthesis/place and route step are fed back 

to the DSE engine for a new exploration until the constraints 

are met. 

 

 
Fig. 10  HW/SW/SIMD Partitioning Flow 

VII. CONCLUSIONS  

In this paper, we have proposed a methodology for the 

synthesis of customized SIMD units. Concept of equivalence 

class between/among SIMD and general-purpose processor 

instructions has been introduced to create a system design 

space for synthesis of customized SIMD units. As a case 

study, we have used AltiVec based SIMD unit along with 

PowerPC405 and generated a suitable architecture for a 

specific image processing application along with the 

extended instruction set and a modified application that can 

execute itself over the synthesized hardware. Results of area 

and application execution time show that significant 

efficiency improvement is achieved through the use of our 

SIMD based synthesis methodology. 
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