
Power-Aware Scheduling and Dynamic Voltage Setting for
Tasks Running on a Hard Real-Time System1

1 This project was funded in part by the NSF CNS grant no. 0509564.

Abstract - This paper addresses the problem of
minimizing energy consumption of a computer system
performing periodic hard real-time tasks with
precedence constraints. In the proposed approach,
dynamic power management and voltage scaling
techniques are combined to reduce the energy
consumption of the CPU and devices. The optimization
problem is first formulated as an integer programming
problem. Next, a three-phase solution framework, which
integrates power management scheduling and task
voltage assignment, is proposed. Experimental results
show that the proposed approach outperforms existing
methods by an average of 18% in terms of the system-
wide energy savings.

I. INTRODUCTION

Reducing power consumption is a key requirement for
extending the battery service lifetime of portable devices.
Even in high-end computer systems, expensive cooling and
packaging cost and declined reliability associated with high
levels of power dissipation, make low power design a critical
design consideration. Dynamic power management (DPM)
and dynamic voltage scaling (DVS) have both proven to be
highly effective techniques for reducing power dissipation in
such systems. DPM refers to a selective shut-off of idle
system components, while DVS slows down underutilized
resources and decreases their operating voltages. A detailed
survey of DPM techniques can be found in [1].

Most researches on low-power task scheduling focus only
on reducing the CPU power by using DVS techniques.
However, in reality, executing a useful task on a computer
system requires cooperation between the CPU and many
other system components, e.g., memory, disk drives, wireless
devices, etc., which can also consume significant amounts of
power. These components generally have their own voltage
levels and may or may not support DVS, which makes it
difficult to apply DVS techniques to the CPU only and
achieve total system power savings. In fact, DVS when
applied to CPU only may even increase the overall system
energy consumption for executing a given set of tasks. At the
same time, DPM is known to be an effective approach for
reducing the power consumption of the various peripheral

components and I/O devices. Thus DVS combined with
DPM has the potential to achieve power savings, not possible
by either DPM or DVS.

This paper addresses the problem of power optimization
of a real-time system having heterogeneous components and
performing periodic hard real-time tasks. The dependencies
between the tasks are described by a directed acyclic graph
(DAG), sometimes referred to as a task graph.

Most related work on low power scheduling for
dependent tasks concentrate on DVS techniques. Some
authors have considered voltage assignment on distributed
embedded systems. The approach proposed in [2] first
schedules tasks based on a list-scheduling algorithm by using
the reciprocal of the slack time as the task priority, and next
tries to evenly distribute the available positive slack time
among tasks on each critical path and thereby reduce the
operating voltages and save energy. Reference [3] assumes a
given task schedule and assignment and proposes an
extended list-scheduling algorithm. At each time step, the
energy saving of a task is calculated as the difference
between the expected energies given the task is scheduled at
this step or at the next step. A task with a higher energy
saving and less slack time has a higher priority. The authors
of [4] present a two-phase framework. In the first phase, a
version of the early-deadline-first scheduling is used to
assign a task to a best-fit processor in terms of the task ready
time and the processor free time. In the second phase, an ILP
optimization problem is formulated and solved in order to
determine the voltage level of the processor used to run each
task.

Several works on DPM-based task scheduling have also
been proposed in the literature. An online scheduling
algorithm for independent tasks is presented in [5]. This
algorithm attempts to reduce the number of device on/off
transitions by greedily extending the pattern for current
device usage so as to reduce average power consumption in
the near future. Reference [6] proposes an offline branch-
and-bound algorithm to search for the energy optimal task
scheduling. In [7], the authors prove that solving energy
optimal task scheduling for DPM on multiple devices is an
NP hard problem even for a simple case where no timing
dependency is considered. References [8] and [9] start with a

Peng Rong

Dept. of Electrical Engineering
University of Southern California

Los Angeles, CA 90089
e-mail : prong@usc.edu

Massoud Pedram

Dept. of Electrical Engineering
University of Southern California

Los Angeles, CA 90089
e-mail : pedram@ceng.usc.edu

given timing-fixed task sequence and propose algorithms to
determine an energy-minimal state transition sequence for
devices while satisfying hard time constraints.

More recently, a number of researchers have reported
DVS algorithms taking into account energy consumption of
the system components. In [10] the authors present a DVS
heuristic based on the critical speed of each task, which is
defined as the CPU speed at which the execution of a task
consumes the least total system energy. Reference [11]
proposes a DVS technique based on a precise energy model
considering both the active power and standby component of
the system power.

In the literature, several works have been proposed on
combining DVS and DPM. Reference [12] present a
Markovian decision processes based DPM model which is a
uniform modeling framework for both DVS and DPM. In
[13], the authors combine DVS with their previously
proposed renewal theory based DPM approach. These two
stochastic approaches are unable to handle tasks with hard-
time constraints or dependency. The problem of combining
DVS and DPM for hard real-time tasks is studied in
reference [14], where a scheduling algorithm for a single
processor with a sleep state is presented which is proved
having a competitive ratio of 3. Task dependency is not
considered in this work either.

To the best of our knowledge, no proposed research work
is conducted to combine DVS and DPM techniques for hard
real-time dependent tasks running on multiple devices. This
is specifically the contribution of the present paper. In
particular, an integer programming based formulation is first
provided to exactly state the optimization problem to be
addressed. Next, a three-phase algorithm is proposed to solve
the power-aware task scheduling and voltage-to-task
assignment problems with the objective of minimizing the
total system energy consumption. The three steps are power-
aware task scheduling, task-level voltage assignment, and
task rescheduling and voltage level refinement.

The remainder of the paper is organized as follows: The
problem formulation is presented in section 2. The three
steps of the proposed algorithm are described in sections 3, 4
and 5, respectively. Experimental results and conclusions are
given in sections 6 and 7.

II. PROBLEM FORMULATION

This paper targets a real-time system which has a single
CPU and system devices (e.g., various I/O devices, main
memory.) The CPU is considered to be device number 0
whereas other devices are numbered from1 to . The CPU
has a discrete number of performance states corresponding
to different supply voltage levels and clock frequencies and
one sleep state. All other devices have a functional state
during which they provide service and a low power sleep
mode during which they cannot provide any services. 2

2 It is straight-forward to extend the mathematical formulation to

handle I/O devices with multiple low-power states (e.g., standby,
drowsy, and sleep.)

Furthermore, a device which is in the performance/functional
state can be in one of two sub-states: 1) actively performing
services; 2) waiting for service requests to arrive. We will
refer to sub-state 1 as the active state and sub-state 2 as the
idle state. We assume that each device k consumes the same
amount of power when they are in active or idle mode
(denoted by funcpowk), but significantly less power when it is
in the sleep mode (sleepowk.)

A set of n non-preemptive dependent tasks periodically
run on the system with a time period Td. The data
dependency (precedence) constraints between the tasks are
described by a directed acyclic task graph, called a task
graph, G(V, E), where each node v denotes a task and a
directed edge e(u, v) represents a data flow between task u
and v and implies that task v can be executed only after task
u finishes. Every task has to be performed on the CPU, and
may require support (services) from some (or all) of the
system devices. It is assumed that during the run time of a
task, all devices whose services are required by the task in
question will stay in their active modes. The problem is to
solve the optimal task scheduling and task-level voltage
assignment with the objective of minimizing the total system
energy consumption during period Td.

Let Vi, i =1, …, m, denote the m operating voltages for
the CPU and fi the clock frequency of the CPU at voltage Vi.
We define the workload of task u as the number of CPU
cycles without considering memory and IO device access
delay. Let Nu,i denote the actual number of CPU cycles
required to complete task u at operating voltage Vi. We
define variable x(u, i) to represent the percentage of the
workload of task u which is performed at voltage Vi. Note
that there are m·n such variables. The execution time
(duration) of task u is calculated as

,

1

(,)m
u i

u
i i

x u i N
dur

f
,

where
1

(,) 1
m

i

x u i .

We introduce n. 0-1 integer variables, Zk(u), as follows:
() 1kZ u exactly if task u requires service from device k.

The energy consumption due to execution of task u is equal
to

2
,

1 1
(,) ()

m K

u u u i i k k u
i k

ene c x u i N V Z u P dur ,

where cu is the effective switched capacitance per CPU cycle;
and Pk is the power consumption of device k in the active
mode.

Let s(u) denote the start time of task u. Thus the
precedence constraint is expressed as

() () (,)us u dur s v e u v E

To formulate the energy consumed by the CPU and
devices during idle time, we need to introduce two virtual
(dummy) tasks: task 0 of duration zero which is placed at
exactly the start of period Td and task n+1 of duration zero
which is placed at the end of period Td. We define tasks 0
and n+1 so as to require all devices, i.e.,

(2-1)

(2-3)

(2-4)

(2-2)

(0) 1 and (1) 1, k kZ Z n k . Notice that the interval
between task 0 and the first task executed on device k
denotes the first idle period. Similarly, the last idle period is
defined as the interval between the last task executed on
device k and task n+1. Also notice that.

We introduce (n+2)2k 0-1 integer scheduling variables
Yk(u,v) as follows: Yk(u,v) = 1 exactly if task u is executed on
device k immediately before task v is executed on the same
device. Since on each device, every task has only one
immediate successor, the following constraint on Yk(u,v)
should be respected

1

1

1, () 1
(,) , 0,1,...,

 0, otherwise

n
k

k
v

Z u
Y u v u n

Similarly, every task has only one immediate predecessor;
i.e.,

0

1, () 1
(,) , 1,2,..., 1

 0, otherwise

n
k

k
u

Z v
Y u v v n

There is also a precedence constraint between task v and its
immediate successor, both of which are executed on device k,
as follows

0
(()) (,) () ,

n

u k v
u

s u dur Y u v s v v V k devs

With variable Yk(u,v), we can express the duration of the idle
time of device k just before it provides service to task v, itk,v,
as

,
0

() (()) (,)
n

k v u k
u

it s v s u dur Y u v .

Let function idlenek(it) return the energy consumed by
device k during idle time of length it. Note that the device
may be placed in a low-power state during its long idle times,
as suggested, for instance, in [8][9]. For the illustration
purpose, assume that device k has two power states: active
and sleep. Let pa and ps denote the power consumptions of
the device in the active and sleep states, respectively. Let tr

and tr denote the summation of energy overheads and
latency overheads associated with the two transitions into
and out of the sleep state, respectively. Recall that the
breakeven time is equal to ()/BE tr a sp p . Then,

 , max(,)
()

, otherwise
tr s BE tr

k
a

p it it
idlene it

p it

Thus, the total energy consumed by the system during
time period Td is calculated as

,
1 0 1

, 1 ,
0 1

(() [1 (0,)])

((0,))

n K n

sys u k k k k v
u k v

K n

k k n k k v
k v

E ene idlene Z v Y v it

idlene it Y v it

Notice that when executing a periodical task set, for a device,
the idle time before the first task starts and the idle time after
the last task finishes actually constitute a single idle period.
The third term on the right-hand side of equation (2-9)
calculates the device energy consumption for such an idle
period. The second term on the RHS handles all the other
idle times.

The optimization problem is to minimize Esys with
respect to constraints (2-1) to (2-8). Note that in this
formulation, we ignore the energy and timing overhead
associated with the voltage changes because switching of the
CPU voltage normally takes between 10-100 microseconds
depending on the hardware support for the DVS function.
This is negligible compared to the device on/off transition
times, which tend to be in the range of a few tenths of a
second. The corresponding energy overhead is also small.

This problem is a nonlinear non-convex integer program
over variables s(u), x(u,i) and Yk(u,v); the worst-case
computational complexity of exactly solving this problem is
expected to be exponential. So we propose a three-step
heuristic approach to solve the problem as follows:
1. Task Ordering: Derive a linear ordering of tasks (i.e.,

calculate Yk(u,v) values) by performing an interactive
minimum-cost matching on some appropriately
constructed graph (cf. section 3.)

2. Voltage Assignment: Given the task ordering implied by
the schedule obtained in step 1, assign voltages and task
durations (i.e., calculate x(u,i) values) and exact start
times (i.e., calculate s(u) values) to each task so as to
meet a target cycle time, Td (cf. section 4.)

3. Refinement: Improve the task scheduling and voltage
assignment of steps 1 and 2 to increase the energy
efficiency of the resulting solutions (cf. section 5.)

III. TASK ORDERING
In this step, we assume that the CPU voltage level is set to
the maximum possible value and that the task execution
times (durations) are calculated on this basis.3 The goal is to
take the task graph with known task execution times and
schedule it on the CPU (device 0) so as to minimize the total
energy dissipation due to I/O devices (1,…,) staying in the
idle mode and that caused by transitioning the devices from
their high-power functional state to the low-power sleep state.
Notice that the summation of energy dissipation in all
devices (0,…,) when these devices are in active states is
fixed and independent of the scheduling. The scheduling
only changes the duration of the idle times and the number
of on to off transitions for the I/O devices.

Let tasksk denote the set of tasks running on device k and
devu denote the set of devices that are needed by task u. A
lower bound on the total system energy dissipation, toteneLB

can be obtained by assuming that there is no energy overhead
for the transitions between idle and sleep states of any device

0

()
u k

LB k u k d u
u V k dev k u tasks

totene funcpow dur sleepow T dur

Now, the actual total energy includes the energy consumed
by various devices when they stay in their idle modes and

3 This is a simple heuristic used to assign task durations for this

step. Other heuristic assignments are possible. Note, however,
that we are only interested in the ordering of tasks after the
completion of this step and will in fact calculate the exact task
schedule and execution times after voltage assignment.

(2-5)

(2-6)

(2-7)

(2-8)

(2-9)

when they transition in and out of the sleep modes. Let’s
denote the schedule, , by the start times of all tasks in the
given task graph. Based on this information, one can linearly
order the set of tasks and represent the active times of each
device as a set of closed intervals. More precisely, device k
will be represented by a segment set, Sk={sk,1,…,sk,z} (z n)
corresponding to the time intervals during which the device
is in its active state.

, 1 ,
, , 1

,1 ,

, , 1 ,
, , , 1

() () if
(,)

() () otherwise

1 if (,)
(,)

0

k

k i k i k

nonactive k i k i
d k k S

nonactive k i k i BE k
k i k k i k i

start s end s i S
t s s

T start s end s

t s s t
F F s s

otherwise

1

, , ,
1 1

()

((1) ())
k

LB

S

k i k k i k nonactive k i
k i

totene totene

F transene F funcpow t s

Here start(s) and end(s) denote the start time and end time of
segment s while transenek denotes the total transition energy
cost of device k to go from idle mode to the sleep mode and
to return to the active mode.

Next we construct an augmented task graph (ATG)
A(V,C) from the given task graph G(V,E) by copying G(V,E)
and subsequently adding/deleting some edges to/from E.
More precisely, the new edge set, C, does not contain any
directed edge uv such that there exists another directed path
from u to v in C. In addition, C contains undirected edges qr
if tasks associated with q and r can be scheduled next to each
other in some order. In addition, each node, q, in V (task)
has three attributes: task execution time, durq, task energy
consumption, eneq, and the list of devices that are required
by the task, devq. Finally, each directed edge qr in C, has an
associated energy cost, extraeneqr, calculated as follows

, , ()

, , , , ()

1

, , , , ,
1

[() , ()]; [() ,]

(,)

((1) ())
k

q r

k q q k succ r r d

k q r k k q k succ r

qr

S

k q r k k q r k nonactive k i
k dev dev i

s start r dur start r s start r dur T

F F s s

extraene

F transene F funcpow t s

Each undirected edge between nodes q and r will have two
such energy costs corresponding to directed edges qr and rq.
Note however that at most one of the two directed edges may
be chosen as part of the scheduling solution.

The basic flow of the proposed scheduling algorithm is to
iteratively find the edge with the least extra energy value and
merge its two end nodes, implying that the corresponding
tasks will be scheduled to run in immediate succession. For a
directed edge, the ordering is fixed a priori whereas for the
undirected edge, the algorithm will choose one of the two
possible orderings and fix it. After each merge, the ATG is
updated by removing all edges that become invalid and
calculating the attributes for the newly generated node. The
process continues until a single node is left in the ATG,
which corresponds to a total ordering (scheduling) of all the
tasks. The process continues until exactly one node remains
in the modified ATG (i.e., a complete schedule is obtained.)

If at any step of the algorithm, there is a tie between the extra
energy costs of two candidate edges qr and uw, then we will
choose the edge that would result in the minimum total extra
energy cost, extraenetot, of the resulting graph if the merge
was performed. Now, extraenetot is calculated as the
summation of the node weights of the resulting graph where
the node weight is itself calculated as the average of the extra
edge costs of outgoing edges from that node.
Example 1: Consider a task graph depicted in Figure 1(a).
Assume that there are four devices {0,1,2,3} with the
following device utilization sets:

(1) {0}
(2) (4) {0,1}
(3) (5) (6) {0,2,3}

dev u
dev u dev u

dev u dev u dev u

.

For the sake of simplicity, we assume that each task has a
unit time duration (which is longer than its breakeven time)
and that the idle power consumption of all devices is the
same. In addition, each device consumes 1 unit of energy for
each transition to and from the sleep state. The ATG graph
of this task set is given in Figure 1(b). The directed edge
u1u2 exists in ATG, because there is a precedence constraint
between nodes u1 and u2 and u2 can be scheduled
immediately after u1. The presence of undirected edge u2u3
implies that u2 and u3 can be scheduled next to the other
without any ordering constraint. The edge labels denote the
energy consumption if the start and end nodes of the edge are
scheduled one after the other. For simplicity, assume all node
energies are 0.

(a) Initial task graph (b) ATG

(c) ATG after merging a pair of node
Figure 1. Illustrative example for power-aware task schedule.

With this ATG, we can start the task scheduling for
power management. There are five edges with minimal edge
energy equal to 0. That is, we can merge the pair of nodes
associated with each of these edges without incurring
additional energy cost. In Figure 1(c), three ATGs are
presented, each corresponding to the merging of the node
pair for one of the edges. Let us consider the left-most ATG
which is generated after merging u2 and u4. Since there is a

directed edge from u2 to u4, u4 must be scheduled after u2.
After the u2-u4 merge, the edge from u3 to u2 becomes a
directed edge, because originally u3 had to be executed
before u4 which has now been merged with u2 into a single
node. The directed edge from u1 to u2 in the initial ATG
disappears because after the u2-u4 merge, u3 stands between
u1 and u2 in the precedence chain.

The left-most ATG in Figure 1(c) has the minimal EATG

value equal to 5. So the merge of u2 and u4 is selected for
the first step.

IV. VOLTAGE ASSIGNMENT

Having generated the task schedule, we fix the ordering of
tasks, but otherwise, ignore the task execution times and start
times, which were heuristically set as explained at the
beginning of section 3, we can easily calculate the Yk(u,v)
values. Thus by substituting the value of Yk(u,v) into the
optimization problem formulated by (2-1) through (2-9), all
constraints becomes linear constraints and the only
unknowns become s(u) and x(u,i) variables. However, the
optimization problem cannot be solved exactly and efficiently,
because the objective function remains a non-convex
function of idle times, it. We thus propose two approaches to
get around this non-convexity issue.

The first one simply ignores the energy components
introduced by idlenek in equation (2-9). The optimization
problem thus becomes a linear programming problem over
continuous variable x(u,i), which can be solved in
polynomial time. It is worth pointing out that, strictly
speaking, x(u,i) should take discrete values instead of
continuous ones, because the number of CPU cycles executed
at each operating voltage is an integer. However, when we
consider a task executed in hundreds of thousands of CPU
cycles, the effect introduced by rounding up to one cycle can
be safely ignored.

The second approach introduces new 0-1 integer
variables Wk(v,h) to approximate the idle time itk,v as follows:
Wk(v,h) =1 exactly if tk,h itk,v < tk,h+1. tk,h and tk,h+1 take
values from a discrete set {tk,1, tk,2, …, tk,H}. The value of
idlenek(it) is approximated by

, ,
1

() () (,)
H

k k v k k h k
h

idlene it idlene t W v h , with 1

1

(,) 1
H

k
h

W v h .

Consequently, constraint (2-8) is thus rewritten as
1

,
1 0

1

, 1
1

, () (()) (,)

,

H n

k h k u k
h u

H

k h k
h

t W v h s v s u dur Y u v

t W v h

.

And equation (2-9) becomes an integer linear cost function.
As a result, the original optimization problem is
approximated with a mixed integer linear program. The
value of parameter H can be adjusted to trade-off the
computational complexity and the approximation accuracy.

V. REFINEMENT

In this section, we provide a top-level overview of an
algorithm that we have developed to improve the results

obtained by the first two steps. Starting from the solution
obtained from steps 1 and 2, we shift the tasks together to
remove redundant positive slack times. Next, we apply a
greedy refinement algorithm on this solution to improve the
total energy cost while meeting the timing constraint. In
particular, we identify the set of critical tasks whose duration
has a large impact on the system energy dissipation, e.g. a
small change of the duration could enable device transitions
to low power states, and change their voltage assignments
accordingly. Detailed are omitted.

VI. EXPERIMENTAL RESULTS

This experiment is conducted on a system comprising of a
single CPU and three other devices. The CPU has three
operating voltage/frequency levels: 1V/200MHz,
1.1V/300MHz and 1.3V/400MHz [11]. The CPU and all
devices support only one low-power sleep state. The power
consumptions in different states, energy and timing
overheads of state transitions for both the CPU and the three
devices are reported in Table 1.

TABLE 1
Power and transition parameters

Device Active
Power

Sleep
Power

Energy
Overhead

Timing
Overhea

d
SDRAM 0.3W ~0 ~0 ~0

HDD 2.1W 0.85W 0.6J 400ms
WLAN 0.7W 0.05W 0.04J 100ms
CPU 1.0W

(200MHz)
0.05W 0.3J 400ms

To evaluate the effectiveness of our proposed approach,
we generated five task graphs by using software package,
TGFF [15], which is a randomized task graph generator
widely used in the literature to evaluate the performance of
scheduling algorithms. Each task graph consists of 20 to 200
tasks. All tasks require supports from SDRAM. The
dependency of tasks on HDD and WLAN were randomly
generated and fixed before optimization. The characteristics
of different task graphs are given in the following table. For
example, for task graph G1, when the CPU has its highest
frequency setting, the cpu is used during 61% of the total
execution whereas the SDRAM, HDD and WLAN are used
for 61%, 29% and 42% of the total time.

TABLE 2

Characteristics of task graphs

Task
Graph

No. of
Tasks

CPU and device utilization factors at
max speed for the CPU

CPU SDRAM HDD WLAN
G1 28 0.61 0.61 0.29 0.42
G2 65 0.72 0.72 0.51 0.39
G3 110 0.34 0.34 0.12 0.23
G4 159 0.48 0.48 0.30 0.25
G5 204 0.55 0.55 0.28 0.36

In this experiment, we compare the total system energy
consumptions of the following methods:

M1: No DVS, no DPM. The CPU always operates at the
highest voltage level and devices are kept active during the
whole execution time. This provides the baseline compare
against.

M2: DPM without any task scheduling. Tasks are
executed on the CPU (which has assumed its highest
frequency and voltage setting) in an un-optimized order
based on their ID numbers after they become available. A
method similar to the approach in [8] is used to determine
the state transition sequences of all devices and the CPU.

M3: DPM with task scheduling. This method is similar
to M2, except that our proposed power-aware task scheduling
algorithm is used to determine the task execution sequence.

M4: Conventional cpu-driven DVS plus DPM. Similar to
M2, except that the task operating voltage is assigned to
minimize the CPU power consumption. More specifically,
the operating voltage setting for each task is obtained by
solving the optimization problem defined in section 2
without considering the energy consumption of devices.

M5: Proposed system-aware DVS plus DPM (which have
called, Power-aware Scheduling and Voltage Setting or
PSVS for short.) Task scheduling and operating voltage
settings are determined through the proposed three-phase
framework.

TABLE 3
 Normalized energy consumption results for different

techniques
Task Graph M2 M3 M4 M5

G1 0.54 0.50 0.58 0.47
G2 0.67 0.59 0.63 0.53
G3 0.28 0.26 0.32 0.25
G4 0.40 0.35 0.42 0.34
G5 0.43 0.37 0.39 0.33

The energy consumptions of different techniques are compared
in Table 3. These values have been normalized with respect to the
baseline energy consumption of M1, e.g., for G1, M2 results in
total system energy consumption which is 54% of the baseline
energy consumption. From this table, it is seen that compared to
DPM technique without task scheduling, our proposed DPM with
task scheduling can reduce energy consumption by an average of
11%. Furthermore, when this method is combined with our
proposed voltage assignment technique (resulting in M5 or PSVS),
an additional 9% energy saving is achieved.

VII. CONCLUSIONS

This paper addresses the problem of minimizing energy
consumption of a computer system performing periodic hard
real-time tasks with precedence constraints. In the proposed
approach, dynamic power management and voltage scaling
techniques are combined to reduce the energy consumption
of the CPU and devices. The optimization problem is first
formulated as an integer programming problem. Next, a
three-phase solution framework, which integrates power
management scheduling and task voltage assignment, is
proposed. Experimental results demonstrate efficiency of the
proposed approach.

REFERENCES

[1] L. Benini, A. Bogliolo and G. De Micheli, “A survey of
design techniques for system-level dynamic power
management,” IEEE Trans on VLSI, vol.8 iss.3, pp.299-
316, 2000.

[2] J. Luo and N. Jha, “Static and dynamic variable voltage
scheduling algorithms for real-time heterogeneous
distributed embedded systems,” ASP-DAC, pp. 719-26,
2002.

[3] F. Gruian and K. Kuchchinski, “LEneS: task scheduling
for low-energy systems using variable supply voltage
processors,” ASP-DAC, pp. 449-55, 2001.

[4] Y. Zhang, X. Hu, and D.Z. Chen, “Task scheduling and
voltage selection for energy minimization,” DAC, pp.
183-8, 2002.

[5] Y-H Lu, L. Benini and G. De Micheli, “Low-power task
scheduling for multiple devices,” CODES, pp. 39-43,
2000.

[6] V. Swaminathan and K. Chakrabarty, “Pruning-based
energy-optimal device scheduling for hard real-time
systems,” CODES, pp.175-80, 2002.

[7] Y-H Lu, L. Benini and G. De Micheli, “Power-aware
operating systems for interactive systems,” IEEE Trans.
on VLSI, vol.10 iss.2, pp. 119-34, 2002.

[8] V. Swaminathan and K. Chakrabarty, “Energy-
conscious, deterministic I/O device scheduling in hard
real-time systems,” IEEE Trans. on CAD, vol.22 iss.7,
pp.847-58, 2003.

[9] J. Liu and P.H. Chou, “Optimizing mode transition
sequences in idle intervals for component-level and
system-level energy minimization,” ICCAD, pp. 21-28,
2004.

[10] R. Jejurikar and R. Gupta, “Dynamic voltage scaling for
system-wide energy minimization in real-time embedded
systems,” ISLPED, pp. 78-81, 2001.

[11] K. Choi, W. Lee, R. Soma and M. Pedram, “Dynamic
voltage and frequency scaling under a precise energy
model considering variable and fixed components of the
system power dissipation,” ICCAD, pp. 29-34, 2004.

[12] Q. Qiu and M. Pedram, "Dynamic power management
based on continuous-time Markov decision
processes," DAC, pp. 555-561, 1999.

[13] T. Simunic, L. Benini, A. Acquaviva, P. Glynn and G.
De Micheli, “Dynamic voltage scaling and power
management for portable systems,” DAC, pp.524-529,
2001.

[14] S. Irani, S. Shukla and R. Gupta, “Algorithms for power
savings,” SODA, pp. 37 – 46, 2003.

[15] http://ziyang.ece.northwestern.edu/tgff.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

