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Abstract - This paper addresses the problem of 
minimizing energy consumption of a computer system 
performing periodic hard real-time tasks with 
precedence constraints. In the proposed approach, 
dynamic power management and voltage scaling 
techniques are combined to reduce the energy 
consumption of the CPU and devices. The optimization 
problem is first formulated as an integer programming 
problem. Next, a three-phase solution framework, which 
integrates power management scheduling and task 
voltage assignment, is proposed. Experimental results 
show that the proposed approach outperforms existing 
methods by an average of 18% in terms of the system-
wide energy savings.  

I. INTRODUCTION

Reducing power consumption is a key requirement for 
extending the battery service lifetime of portable devices. 
Even in high-end computer systems, expensive cooling and 
packaging cost and declined reliability associated with high 
levels of power dissipation, make low power design a critical 
design consideration. Dynamic power management (DPM) 
and dynamic voltage scaling (DVS) have both proven to be 
highly effective techniques for reducing power dissipation in 
such systems. DPM refers to a selective shut-off of idle 
system components, while DVS slows down underutilized 
resources and decreases their operating voltages. A detailed 
survey of DPM techniques can be found in [1]. 

Most researches on low-power task scheduling focus only 
on reducing the CPU power by using DVS techniques. 
However, in reality, executing a useful task on a computer 
system requires cooperation between the CPU and many 
other system components, e.g., memory, disk drives, wireless 
devices, etc., which can also consume significant amounts of 
power. These components generally have their own voltage 
levels and may or may not support DVS, which makes it 
difficult to apply DVS techniques to the CPU only and 
achieve total system power savings. In fact, DVS when 
applied to CPU only may even increase the overall system 
energy consumption for executing a given set of tasks. At the 
same time, DPM is known to be an effective approach for 
reducing the power consumption of the various peripheral 

components and I/O devices. Thus DVS combined with 
DPM has the potential to achieve power savings, not possible 
by either DPM or DVS. 

This paper addresses the problem of power optimization 
of a real-time system having heterogeneous components and 
performing periodic hard real-time tasks. The dependencies 
between the tasks are described by a directed acyclic graph 
(DAG), sometimes referred to as a task graph.

Most related work on low power scheduling for 
dependent tasks concentrate on DVS techniques. Some 
authors have considered voltage assignment on distributed 
embedded systems.  The approach proposed in [2] first 
schedules tasks based on a list-scheduling algorithm by using 
the reciprocal of the slack time as the task priority, and next 
tries to evenly distribute the available positive slack time 
among tasks on each critical path and thereby reduce the 
operating voltages and save energy. Reference [3] assumes a 
given task schedule and assignment and proposes an 
extended list-scheduling algorithm. At each time step, the 
energy saving of a task is calculated as the difference 
between the expected energies given the task is scheduled at 
this step or at the next step. A task with a higher energy 
saving and less slack time has a higher priority. The authors 
of [4] present a two-phase framework. In the first phase, a 
version of the early-deadline-first scheduling is used to 
assign a task to a best-fit processor in terms of the task ready 
time and the processor free time. In the second phase, an ILP 
optimization problem is formulated and solved in order to 
determine the voltage level of the processor used to run each 
task.  

Several works on DPM-based task scheduling have also 
been proposed in the literature. An online scheduling 
algorithm for independent tasks is presented in [5]. This 
algorithm attempts to reduce the number of device on/off 
transitions by greedily extending the pattern for current 
device usage so as to reduce average power consumption in 
the near future. Reference [6] proposes an offline branch-
and-bound algorithm to search for the energy optimal task 
scheduling. In [7], the authors prove that solving energy 
optimal task scheduling for DPM on multiple devices is an 
NP hard problem even for a simple case where no timing 
dependency is considered. References [8] and [9] start with a 
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given timing-fixed task sequence and propose algorithms to 
determine an energy-minimal state transition sequence for 
devices while satisfying hard time constraints. 

More recently, a number of researchers have reported 
DVS algorithms taking into account energy consumption of 
the system components. In [10] the authors present a DVS 
heuristic based on the critical speed of each task, which is 
defined as the CPU speed at which the execution of a task 
consumes the least total system energy. Reference [11] 
proposes a DVS technique based on a precise energy model 
considering both the active power and standby component of 
the system power.  

In the literature, several works have been proposed on 
combining DVS and DPM. Reference [12] present a 
Markovian decision processes based DPM model which is a 
uniform modeling framework for both DVS and DPM. In 
[13], the authors combine DVS with their previously 
proposed renewal theory based DPM approach. These two 
stochastic approaches are unable to handle tasks with hard-
time constraints or dependency. The problem of combining 
DVS and DPM for hard real-time tasks is studied in 
reference [14], where a scheduling algorithm for a single 
processor with a sleep state is presented which is proved 
having a competitive ratio of 3. Task dependency is not 
considered in this work either.  

To the best of our knowledge, no proposed research work 
is conducted to combine DVS and DPM techniques for hard 
real-time dependent tasks running on multiple devices. This 
is specifically the contribution of the present paper. In 
particular, an integer programming based formulation is first 
provided to exactly state the optimization problem to be 
addressed. Next, a three-phase algorithm is proposed to solve 
the power-aware task scheduling and voltage-to-task 
assignment problems with the objective of minimizing the 
total system energy consumption. The three steps are power-
aware task scheduling, task-level voltage assignment, and 
task rescheduling and voltage level refinement. 

The remainder of the paper is organized as follows: The 
problem formulation is presented in section 2. The three 
steps of the proposed algorithm are described in sections 3, 4 
and 5, respectively. Experimental results and conclusions are 
given in sections 6 and 7.   

II. PROBLEM FORMULATION 

This paper targets a real-time system which has a single 
CPU and  system devices (e.g., various I/O devices, main 
memory.) The CPU is considered to be device number 0 
whereas other devices are numbered from1 to . The CPU 
has a discrete number of performance states corresponding 
to different supply voltage levels and clock frequencies and 
one sleep state. All other devices have a functional state 
during which they provide service and a low power sleep
mode during which they cannot provide any services. 2
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handle I/O devices with multiple low-power states (e.g., standby, 
drowsy, and sleep.)  

Furthermore, a device which is in the performance/functional 
state can be in one of two sub-states: 1) actively performing 
services; 2) waiting for service requests to arrive. We will 
refer to sub-state 1 as the active state and sub-state 2 as the 
idle state. We assume that each device k consumes the same 
amount of power when they are in active or idle mode 
(denoted by funcpowk), but significantly less power when it is 
in the sleep mode (sleepowk.) 

A set of n non-preemptive dependent tasks periodically 
run on the system with a time period Td. The data 
dependency (precedence) constraints between the tasks are 
described by a directed acyclic task graph, called a task 
graph, G(V, E), where each node v denotes a task and a 
directed edge e(u, v) represents a data flow between task u
and v and implies that task v can be executed only after task 
u finishes. Every task has to be performed on the CPU, and 
may require support (services) from some (or all) of the 
system devices. It is assumed that during the run time of a 
task, all devices whose services are required by the task in 
question will stay in their active modes. The problem is to 
solve the optimal task scheduling and task-level voltage 
assignment with the objective of minimizing the total system 
energy consumption during period Td.

Let Vi, i =1, …, m, denote the m operating voltages for 
the CPU and fi the clock frequency of the CPU at voltage Vi.
We define the workload of task u as the number of CPU 
cycles without considering memory and IO device access 
delay. Let Nu,i denote the actual number of CPU cycles 
required to complete task u at operating voltage Vi. We 
define variable x(u, i) to represent the percentage of the 
workload of task u which is performed at voltage Vi. Note 
that there are m·n such variables. The execution time 
(duration) of task u is calculated as 
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We introduce n.  0-1 integer variables, Zk(u), as follows: 
( ) 1kZ u  exactly if task u requires service from device k.

The energy consumption due to execution of task u is equal 
to 
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where cu is the effective switched capacitance per CPU cycle; 
and Pk is the power consumption of device k in the active 
mode. 

Let s(u) denote the start time of task u. Thus the 
precedence constraint is expressed as 

( ) ( ) ( , )us u dur s v e u v E

To formulate the energy consumed by the CPU and 
devices during idle time, we need to introduce two virtual 
(dummy) tasks: task 0 of duration zero which is placed at 
exactly the start of period Td and task n+1 of duration zero 
which is placed at the end of period Td.  We define tasks 0 
and n+1 so as to require all devices, i.e., 
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(0) 1 and ( 1) 1,  k kZ Z n k . Notice that the interval 
between task 0 and the first task executed on device k
denotes the first idle period. Similarly, the last idle period is 
defined as the interval between the last task executed on 
device k and task n+1. Also notice that. 

We introduce (n+2)2k 0-1 integer scheduling variables
Yk(u,v) as follows: Yk(u,v) = 1 exactly if task u is executed on 
device k immediately before task v is executed on the same 
device. Since on each device, every task has only one 
immediate successor, the following constraint on Yk(u,v)
should be respected

1

1
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Similarly, every task has only one immediate predecessor; 
i.e., 
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There is also a precedence constraint between task v and its 
immediate successor, both of which are executed on device k,
as follows 

0
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With variable Yk(u,v), we can express the duration of the idle 
time of device k just before it provides service to task v, itk,v,
as 
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Let function idlenek(it) return the energy consumed by 
device k during idle time of length it. Note that the device 
may be placed in a low-power state during its long idle times, 
as suggested, for instance, in [8][9]. For the illustration 
purpose, assume that device k has two power states: active 
and sleep.  Let pa and ps denote the power consumptions of 
the device in the active and sleep states, respectively. Let tr

and tr denote the summation of energy overheads and 
latency overheads associated with the two transitions into 
and out of the sleep state, respectively. Recall that the 
breakeven time is equal to ( )/BE tr a sp p . Then, 
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Thus, the total energy consumed by the system during 
time period Td is calculated as 
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Notice that when executing a periodical task set, for a device, 
the idle time before the first task starts and the idle time after 
the last task finishes actually constitute a single idle period. 
The third term on the right-hand side of equation (2-9) 
calculates the device energy consumption for such an idle 
period. The second term on the RHS handles all the other 
idle times.  

The optimization problem is to minimize Esys with 
respect to constraints (2-1) to (2-8). Note that in this 
formulation, we ignore the energy and timing overhead 
associated with the voltage changes because switching of the 
CPU voltage normally takes between 10-100 microseconds 
depending on the hardware support for the DVS function. 
This is negligible compared to the device on/off transition 
times, which tend to be in the range of a few tenths of a 
second. The corresponding energy overhead is also small. 

This problem is a nonlinear non-convex integer program 
over variables s(u), x(u,i) and Yk(u,v); the worst-case 
computational complexity of exactly solving this problem is 
expected to be exponential. So we propose a three-step 
heuristic approach to solve the problem as follows: 
1. Task Ordering: Derive a linear ordering of tasks (i.e., 

calculate Yk(u,v) values) by performing an interactive 
minimum-cost matching on some appropriately 
constructed graph (cf. section 3.) 

2. Voltage Assignment: Given the task ordering implied by 
the schedule obtained in step 1, assign voltages and task 
durations (i.e., calculate x(u,i) values) and exact start 
times (i.e., calculate s(u) values) to each task so as to 
meet a target cycle time, Td  (cf. section 4.) 

3. Refinement: Improve the task scheduling and voltage 
assignment of steps 1 and 2 to increase the energy 
efficiency of the resulting solutions (cf. section 5.) 

III. TASK ORDERING 
In this step, we assume that the CPU voltage level is set to 
the maximum possible value and that the task execution 
times (durations) are calculated on this basis.3 The goal is to 
take the task graph with known task execution times and 
schedule it on the CPU (device 0) so as to minimize the total 
energy dissipation due to I/O devices (1,…, ) staying in the 
idle mode and that caused by transitioning the devices from 
their high-power functional state to the low-power sleep state. 
Notice that the summation of energy dissipation in all 
devices (0,…, ) when these devices are in active states is 
fixed and independent of the scheduling. The scheduling 
only changes the duration of the idle times and the number 
of on to off transitions for the I/O devices.   

Let tasksk denote the set of tasks running on device k and 
devu denote the set of devices that are needed by task u.  A 
lower bound on the total system energy dissipation, toteneLB

can be obtained by assuming that there is no energy overhead 
for the transitions between idle and sleep states of any device 

0

( )
u k

LB k u k d u
u V k dev k u tasks

totene funcpow dur sleepow T dur

Now, the actual total energy includes the energy consumed 
by various devices when they stay in their idle modes and 
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step. Other heuristic assignments are possible. Note, however, 
that we are only interested in the ordering of tasks after the 
completion of this step and will in fact calculate the exact task 
schedule and execution times after voltage assignment. 
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when they transition in and out of the sleep modes. Let’s 
denote the schedule, , by the start times of all tasks in the 
given task graph. Based on this information, one can linearly 
order the set of tasks and represent the active times of each 
device as a set of closed intervals. More precisely, device k
will be represented by a segment set, Sk={sk,1,…,sk,z} (z n)
corresponding to the time intervals during which the device 
is in its active state.  
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Here start(s) and end(s) denote the start time and end time of 
segment s while transenek denotes the total transition energy 
cost of device k to go from idle mode to the sleep mode and
to return to the active mode.   

Next we construct an augmented task graph (ATG) 
A(V,C) from the given task graph G(V,E) by copying G(V,E)
and subsequently adding/deleting some edges to/from E.
More precisely, the new edge set, C, does not contain any 
directed edge uv such that there exists another directed path 
from u to v in C. In addition, C contains undirected edges qr
if tasks associated with q and r can be scheduled next to each 
other in some order. In addition, each node, q, in V (task) 
has three attributes: task execution time, durq, task energy 
consumption, eneq, and the list of devices that are required 
by the task, devq. Finally, each directed edge qr in C, has an 
associated energy cost, extraeneqr, calculated as follows 
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Each undirected edge between nodes q and r will have two 
such energy costs corresponding to directed edges qr and rq.
Note however that at most one of the two directed edges may 
be chosen as part of the scheduling solution. 

The basic flow of the proposed scheduling algorithm is to 
iteratively find the edge with the least extra energy value and 
merge its two end nodes, implying that the corresponding 
tasks will be scheduled to run in immediate succession. For a 
directed edge, the ordering is fixed a priori whereas for the 
undirected edge, the algorithm will choose one of the two 
possible orderings and fix it. After each merge, the ATG is 
updated by removing all edges that become invalid and 
calculating the attributes for the newly generated node. The 
process continues until a single node is left in the ATG, 
which corresponds to a total ordering (scheduling) of all the 
tasks. The process continues until exactly one node remains 
in the modified ATG (i.e., a complete schedule is obtained.)  

If at any step of the algorithm, there is a tie between the extra 
energy costs of two candidate edges qr and uw, then we will 
choose the edge that would result in the minimum total extra 
energy cost, extraenetot, of the resulting graph if the merge 
was performed. Now, extraenetot is calculated as the 
summation of the node weights of the resulting graph where 
the node weight is itself calculated as the average of the extra 
edge costs of outgoing edges from that node.  
Example 1: Consider a task graph depicted in Figure 1(a). 
Assume that there are four devices {0,1,2,3} with the 
following device utilization sets:  

( 1) {0}
( 2) ( 4) {0,1}
( 3) ( 5) ( 6) {0,2,3}

dev u
dev u dev u

dev u dev u dev u

.

For the sake of simplicity, we assume that each task has a 
unit time duration (which is longer than its breakeven time) 
and that the idle power consumption of all devices is the 
same. In addition, each device consumes 1 unit of energy for 
each transition to and from the sleep state. The ATG graph 
of this task set is given in Figure 1(b). The directed edge 
u1u2 exists in ATG, because there is a precedence constraint 
between nodes u1 and u2 and u2 can be scheduled 
immediately after u1. The presence of undirected edge u2u3
implies that u2 and u3 can be scheduled next to the other 
without any ordering constraint. The edge labels denote the 
energy consumption if the start and end nodes of the edge are 
scheduled one after the other. For simplicity, assume all node 
energies are 0.  

(a) Initial task graph            (b) ATG 

(c) ATG after merging a pair of node  
Figure 1. Illustrative example for power-aware task schedule. 

With this ATG, we can start the task scheduling for 
power management. There are five edges with minimal edge 
energy equal to 0. That is, we can merge the pair of nodes 
associated with each of these edges without incurring 
additional energy cost. In Figure 1(c), three ATGs are 
presented, each corresponding to the merging of the node 
pair for one of the edges. Let us consider the left-most ATG 
which is generated after merging u2 and u4. Since there is a 



directed edge from u2 to u4, u4 must be scheduled after u2. 
After the u2-u4 merge, the edge from u3 to u2 becomes a 
directed edge, because originally u3 had to be executed 
before u4 which has now been merged with u2 into a single 
node. The directed edge from u1 to u2 in the initial ATG 
disappears because after the u2-u4 merge, u3 stands between 
u1 and u2 in the precedence chain.  

The left-most ATG in Figure 1(c) has the minimal EATG

value equal to 5. So the merge of u2 and u4 is selected for 
the first step. 

IV. VOLTAGE ASSIGNMENT

Having generated the task schedule, we fix the ordering of 
tasks, but otherwise, ignore the task execution times and start 
times, which were heuristically set as explained at the 
beginning of section 3, we can easily calculate the Yk(u,v)
values. Thus by substituting the value of Yk(u,v) into the 
optimization problem formulated by (2-1) through (2-9), all 
constraints becomes linear constraints and the only 
unknowns become s(u) and x(u,i) variables. However, the 
optimization problem cannot be solved exactly and efficiently, 
because the objective function remains a non-convex 
function of idle times, it. We thus propose two approaches to 
get around this non-convexity issue.  

The first one simply ignores the energy components 
introduced by idlenek in equation (2-9). The optimization 
problem thus becomes a linear programming problem over 
continuous variable x(u,i), which can be solved in 
polynomial time. It is worth pointing out that, strictly 
speaking, x(u,i) should take discrete values instead of 
continuous ones, because the number of CPU cycles executed 
at each operating voltage is an integer. However, when we 
consider a task executed in hundreds of thousands of CPU 
cycles, the effect introduced by rounding up to one cycle can 
be safely ignored. 

The second approach introduces new 0-1 integer 
variables Wk(v,h) to approximate the idle time itk,v as follows: 
Wk(v,h) =1 exactly if tk,h  itk,v < tk,h+1. tk,h and tk,h+1  take 
values from a discrete set {tk,1, tk,2, …, tk,H}. The value of 
idlenek(it) is approximated by 
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And equation (2-9) becomes an integer linear cost function. 
As a result, the original optimization problem is 
approximated with a mixed integer linear program. The 
value of parameter H can be adjusted to trade-off the 
computational complexity and the approximation accuracy.  

V. REFINEMENT

In this section, we provide a top-level overview of an 
algorithm that we have developed to improve the results 

obtained by the first two steps. Starting from the solution 
obtained from steps 1 and 2, we shift the tasks together to 
remove redundant positive slack times.  Next, we apply a 
greedy refinement algorithm on this solution to improve the 
total energy cost while meeting the timing constraint. In 
particular, we identify the set of critical tasks whose duration 
has a large impact on the system energy dissipation, e.g. a 
small change of the duration could enable device transitions 
to low power states, and change their voltage assignments 
accordingly. Detailed are omitted.   

VI. EXPERIMENTAL RESULTS

This experiment is conducted on a system comprising of a 
single CPU and three other devices. The CPU has three 
operating voltage/frequency levels: 1V/200MHz, 
1.1V/300MHz and 1.3V/400MHz [11]. The CPU and all 
devices support only one low-power sleep state. The power 
consumptions in different states, energy and timing 
overheads of state transitions for both the CPU and the three 
devices are reported in Table 1.  

TABLE 1  
Power and transition parameters 

Device Active 
Power 

Sleep 
Power 

Energy 
Overhead

Timing 
Overhea

d
SDRAM 0.3W ~0 ~0 ~0 

HDD 2.1W 0.85W 0.6J 400ms 
WLAN 0.7W 0.05W 0.04J 100ms 
CPU 1.0W 

(200MHz)
0.05W 0.3J 400ms 

To evaluate the effectiveness of our proposed approach, 
we generated five task graphs by using software package, 
TGFF [15], which is a randomized task graph generator 
widely used in the literature to evaluate the performance of 
scheduling algorithms. Each task graph consists of 20 to 200 
tasks. All tasks require supports from SDRAM. The 
dependency of tasks on HDD and WLAN were randomly 
generated and fixed before optimization. The characteristics 
of different task graphs are given in the following table. For 
example, for task graph G1, when the CPU has its highest 
frequency setting, the cpu is used during 61% of the total 
execution whereas the SDRAM, HDD and WLAN are used 
for 61%, 29% and 42% of the total time.  

TABLE 2  

Characteristics of task graphs 

Task 
Graph

No. of 
Tasks

CPU and device utilization factors at 
max speed for the CPU 

CPU SDRAM HDD WLAN 
G1 28 0.61 0.61 0.29 0.42 
G2 65 0.72 0.72 0.51 0.39 
G3 110 0.34 0.34 0.12 0.23 
G4 159 0.48 0.48 0.30 0.25 
G5 204 0.55 0.55 0.28 0.36 

In this experiment, we compare the total system energy 
consumptions of the following methods: 



M1: No DVS, no DPM. The CPU always operates at the 
highest voltage level and devices are kept active during the 
whole execution time. This provides the baseline compare 
against. 

M2: DPM without any task scheduling. Tasks are 
executed on the CPU (which has assumed its highest 
frequency and voltage setting) in an un-optimized order 
based on their ID numbers after they become available. A 
method similar to the approach in [8] is used to determine 
the state transition sequences of all devices and the CPU. 

M3: DPM with task scheduling. This method is similar 
to M2, except that our proposed power-aware task scheduling 
algorithm is used to determine the task execution sequence.  

M4: Conventional cpu-driven DVS plus DPM. Similar to 
M2, except that the task operating voltage is assigned to 
minimize the CPU power consumption. More specifically, 
the operating voltage setting for each task is obtained by 
solving the optimization problem defined in section 2 
without considering the energy consumption of devices.  

M5: Proposed system-aware DVS plus DPM (which have 
called, Power-aware Scheduling and Voltage Setting or 
PSVS for short.) Task scheduling and operating voltage 
settings are determined through the proposed three-phase 
framework.  

TABLE 3 
 Normalized energy consumption results for different 

techniques 
Task Graph M2 M3 M4 M5 

G1 0.54 0.50 0.58 0.47 
G2 0.67 0.59 0.63 0.53 
G3 0.28 0.26 0.32 0.25 
G4 0.40 0.35 0.42 0.34 
G5 0.43 0.37 0.39 0.33 

The energy consumptions of different techniques are compared 
in Table 3. These values have been normalized with respect to the 
baseline energy consumption of M1, e.g., for G1, M2 results in 
total system energy consumption which is 54% of the baseline 
energy consumption. From this table, it is seen that compared to 
DPM technique without task scheduling, our proposed DPM with 
task scheduling can reduce energy consumption by an average of 
11%. Furthermore, when this method is combined with our 
proposed voltage assignment technique (resulting in M5 or PSVS), 
an additional 9% energy saving is achieved. 

VII. CONCLUSIONS

This paper addresses the problem of minimizing energy 
consumption of a computer system performing periodic hard 
real-time tasks with precedence constraints. In the proposed 
approach, dynamic power management and voltage scaling 
techniques are combined to reduce the energy consumption 
of the CPU and devices. The optimization problem is first 
formulated as an integer programming problem. Next, a 
three-phase solution framework, which integrates power 
management scheduling and task voltage assignment, is 
proposed. Experimental results demonstrate efficiency of the 
proposed approach.  
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