
FSM-Based Transaction-Level Functional Coverage
for Interface Compliance Verification

Man-Yun Su, Che-Hua Shih, Juinn-Dar Huang, and Jing-Yang Jou

Department of Electronics Engineering
National Chiao Tung University

Hsinchu, Taiwan, R.O.C.
e-mail:{powmei, matar}@eda.ee.nctu.edu.tw, jdhuang@mail.nctu.edu.tw, jyjou@faculty.nctu.edu.tw

Abstract – Interface compliance verification plays a very
important role in modern SoC designs. In order to perform a
quantitative analysis of simulation completeness, adequate
coverage metrics are mandatory. In this paper, we propose a
finite state machine (FSM) based transaction-level functional
coverage methodology for interface compliance verification. A
language, State-Oriented Language (SOL), is developed to
specify functional transactions mainly at the higher FSM level
instead of lower logic or signal level. By utilizing SOL, it is
simple and rigorous to specify interesting transactions from
the specification FSM of the target interface protocol.
Experimental results show that the proposed methodology can
effectively improve the verification quality as well as increase
the efficiency of regression verification.

1. Introduction

In designing a modern system-on-a-chip (SoC), the
platform-based design methodology with reusable
intellectual property (IP) cores is usually adopted to
accelerate the design and verification process [1]. Each pre-
verified IP core is wrapped with certain interface logic and
integrated into a system platform which is based on that
interface protocol. In order to ensure that each component
can concordantly communicate with others within the
system, it is very important to guarantee that the interface
logic of each utilized IP core conforms to the protocol.
Hence, interface compliance verification becomes an
essential part of the SoC verification flow.

Though there are numerous existing functional
verification methods, simulation is still the most commonly
used technique. During simulation, coverage metrics are
usually adopted to perform a quantitative analysis of
simulation completeness. Coverage metrics can not only
measure how well a design is verified objectively but also
help improve the quality of verification patterns. That is,
they are capable of guiding either direct (deterministic) or
random patterns to target those unverified design corners.
Therefore, exploring adequate coverage metrics is a very
crucial issue in today’s functional verification.

In general, there are two major categories of coverage
metrics [2]: code coverage and functional coverage. Code
coverage methods concentrate on identifying which part of
the hardware description language (HDL) code has been

executed in the design under verification (DUV). That is,
they measure how much of the HDL implementation has
been exercised [3-6]. For example, statement coverage,
branch coverage, and condition coverage are well-known
code coverage metrics. However, the fundamental issue of
all code coverage metrics is that they can only measure
how well the structural HDL code has been exercised. They
are not sufficient to represent the whole functionality of the
design specification. Namely, the verification quality is
generally considered not enough for modern complex SoC
designs even if a high code coverage is achieved. Thus, the
functional coverage is usually applied to further boost the
verification quality.

Functional coverage, as its name implies, focuses on the
design functionality. It measures how much of the original
design specification has been verified. That is, the coverage
is independent of the details of HDL implementation, and
thus is considerably hard to measure. Many methods are
proposed to address this issue. In [7], a user-defined cross-
product coverage measurement tool is developed. In [8-9],
the cross-product functional coverage is further improved
either in quality or efficiency. In [10-11], the specification
must be first given as a proprietary graph. Then the
functional coverage analyzer can be automatically
generated by traversing the graph. The methods mentioned
above do really help interface compliance verification.
However, these techniques generally require users to
specify what they want to cover in proprietary input
formats or languages uncommon to typical designers.

In this paper, we propose a transaction-level functional
coverage methodology and provide a means to specify
functional transactions at a higher FSM level, which is
popular and familiar to most designers. First, the interface
protocol is given as a specification FSM (spec FSM) by
using the concepts in [12-13]. Then a transaction can be
defined as a specific sequence of state transitions within the
spec FSM. Meanwhile, we develop a transaction
description language, State-Oriented Language (SOL),
which is capable of modeling diverse state transition
sequences precisely and rigorously. The transactions can
then be specified in an easier and more readable way even
by common designers. Moreover, the specified transactions
with the spec FSM can be further translated into the
corresponding functional coverage analyzer automatically.

The rest of this paper is organized as follows. Section 2
introduces the basic concepts and the related works of
transaction-level functional coverage. In Section 3, the
state-based transaction description language SOL and the
details of our verification methodology are presented.
Section 4 demonstrates the proposed methodology with the
AMBA AHB slave protocol and shows the experimental
results. Finally, the conclusions are given in Section 5.

2. Transaction-level functional coverage

As mentioned, functional coverage is favorable to
improve the verification quality. Transaction-level
functional coverage is one of the commonly used methods
to measure the functional coverage for an interface design
[13-16]. An interface specification usually defines a set of
different transaction types. A transaction can be considered
as the transfer of data and control over an interface to
perform certain basic operation. For example, a transaction
can be a 4-beat burst or an 8-beat burst, or a 4-beat burst
followed by an 8-beat one. Transaction-level functional
coverage is generally measured by how many types of
transactions are exercised. However, two designs may have
different sets of interesting transactions even if they
comply with the same interface protocol. Therefore, the
interesting transactions of a given design are usually
derived manually.

Several approaches are proposed for the transaction-level
functional coverage. For M-path coverage [13], the
protocol is first modeled as a spec FSM. Then an M-path is
defined as a path of state transitions which can form a
complete bus transfer in the FSM model. In other words, an
M-path, which is a finite sequence of state transitions, is
actually a simple transaction. M-paths are used as the
targets for coverage measurement.

In [14], Component Wrapper Language (CWL) is used
to describe signal sequences based on regular expressions.
In CWL, the input and output signals must be declared
first. Then signal values at each cycle are defined as signal
sets. Next, each simple transaction is modeled by utilizing
the defined signal sets. Finally, a more complex transaction
can be built up by assembling simple ones. In this
approach, values of individual signals are required when
describing thorough transactions. If the interesting
transactions are getting more complex, it might be
troublesome and time-consuming to author the
corresponding CWL descriptions.

In general, it is tedious and error-prone for human to
specify transactions if the detailed signal values are
required. To cope with this issue, it is a better idea to
provide a simple, human-friendly, rigorous, and systematic
way to specify transactions at a higher level of abstraction
instead of at the signal level. In our work, the interface
protocol is specified as a spec FSM by using the methods in
[12-13]. A transaction can then be defined as a specific
sequence of state transitions. This enables the use of states
in the spec FSM as basic elements to describe transactions.

The proposed method can raise the transaction description
to the FSM level which is well understood by most
designers. It facilitates the encapsulation of the details of
low-level signals so that the detailed signal values at each
cycle are no longer required. Hence, one can put more
emphasis on the functionality at the familiar FSM level.

3. Proposed approach

3.1. Our methodology

In this paper, we propose an FSM-based transaction-
level functional coverage methodology. In order to provide
a means to specify transactions at the FSM level, we
develop a transaction description language, State-Oriented
Language (SOL), mainly based on the Property
Specification Language (PSL) [17]. Because PSL provides
a richer set of expressive and readable language constructs
than typical regular-expression-based approaches do, SOL
adopts most PSL constructs used to describe temporal
sequences. In SOL, the PSL-like syntax is used to represent
a sequence of state transitions. Though SOL is similar to
PSL, the fundamental conceptual difference between them
is that SOL uses states as the atomic elements when
defining a transaction. Hence, it is easier for designers to
author complex state-based transactions by using SOL.

The flow of our methodology is illustrated in Figure 1.
The interface protocol needs to be specified as a spec FSM
first. Note that the spec FSM can be translated into an
interface protocol checker [13]. Meanwhile, the interesting
transactions are manually specified by using SOL. These
transactions with the spec FSM are further translated into a
functional coverage analyzer automatically. Next, we
simulate the whole system, including the DUV, verification
patterns, checker, and coverage analyzer. According to the
outcome of the checker, we can know if the DUV conforms
to the interface protocol. From the coverage analyzer, the
report tells how many interesting transactions have been
verified or not. Moreover, the coverage information can
guide the development of either direct or random patterns
to hit those unverified corner cases.

Spec
FSM

Coverage
AnalyzerTranslator

Checker
(Monitor)

Simulator

DUV

Direct/Random
Patterns

SOL

Coverage
Report

User-Defined
FSM-Based

Transactions using
SOL

Spec
FSM

Coverage
AnalyzerTranslator

Checker
(Monitor)

Simulator

DUV

Direct/Random
Patterns

SOL

Coverage
Report

User-Defined
FSM-Based

Transactions using
SOL

Coverage
AnalyzerTranslator

Checker
(Monitor)

Simulator

DUV

Direct/Random
Patterns

SOL

Coverage
Report

User-Defined
FSM-Based

Transactions using
SOL

Figure 1. The flow of our methodology.
Guidance

3.2. The transaction description language SOL

The syntax of SOL is based on the following principles:
˙ Since a transaction is defined as a specific sequence

of state transitions in the spec FSM. States are used
as basic elements to describe sequences.

˙ In order to keep the spec FSM as simple as possible,
extra signals can be included in additional to the
states while defining a transaction.

˙ A sequence can be defined once as a named
sequence and then be reused later. The assignment
operator is used to define a named sequence. The
left-hand-side of the assignment operator becomes a
synonym for the sequence on the right-hand-side.

˙ Sequence name is enclosed in braces when referred.
˙ A sequence set comprises one or more sequences.

Sequences are enclosed in angle brackets and
separated by commas.

The syntax of SOL is briefly introduced below (shown in
shaded area). The FSM shown in Figure 2 is taken as an
example to introduce operators in SOL.

3.2.1. Extra signal qualification (“”). Extra signals can be
qualified while making a state transition. The Boolean
expression built from the extra signals should be enclosed
in double quotes.

3.2.2. Concatenation (;). Two sequences can be
concatenated into one by the concatenation operator.
Example 1 In Figure 2(a), T1 is a transaction with the state
transitions that starts from S1, then moves through S3, S4,
and ends at S1.
T1: S1 S3 S4 S1
T1 = { S1 ; S3 ; S4 ; S1 };
Example 2 In Figure 2(b), T2 is another transaction with
the same state transitions sequence as T1 while the extra
signal V must be true when moving from S1 to S3.
T2 : S1 1V⎯⎯ →⎯ == S3 S4 S1
T2 = { S1 “V == 1” ; S3 ; S4 ; S1 };

3.2.3. Repetition ([]). The repetition operators are used to
describe repeated concatenations of a sequence. There are
three types of the repetition operators: consecutive
repetition ([*]), non-consecutive repetition ([=]), and goto
repetition ([]).
(a) consecutive repetition ([*]).
Example 3 In Figure 2(a), T3 is a transaction with the state
transitions that starts from S1, moves to S2, and stays at S2
for three consecutive cycles, then ends at S1.
T3 : S1 S2 S2 S2 S1
T3= { S1 ; S2[*3] ; S1 };

FSM
State: S1,S2,S3,S4

S1

S2 S3

S4

(a)

S1

S2 S3

S4

(b)

V==1V==1

FSM
State: S1,S2,S3,S4

S1

S2 S3

S4

(a)

S1

S2 S3

S4

(a)

S1

S2 S3

S4

(b)

V==1V==1 S1

S2 S3

S4

(b)

V==1V==1

Figure 2. An example FSM.

Example 4 In Figure 2(a), T4 is a transaction with the state
transitions that starts from S1, moves to S2, and stays at S2
for one to five consecutive cycles, then ends at S1.
T4 : S1 S2 (1~5 cycles) S1
T4 = { S1 ; S2[*1:5] ; S1};
(b) non-consecutive repetition ([=]).
Example 5 In Figure 2(a), T5 is a transaction with the state
transitions that starts from S1, and then visits S2 three
times. The visits of S2 need not to be in consecutive cycles.
In addition, T5 holds after the 3rd S2 is visited and still
holds before the 4th S2 appears.
T5 : S1 … S2 … S2 … S2 … S2 …
T5 = { S1 ; S2[=3] };
(c) goto repetition ([]).
Example 6 In Figure 2(a), similar to T5, T6 is also a
transaction with the state transitions that starts from S1, and
then moves to S2 three times (can be non-consecutive). In
addition, T6 holds only at the cycle in which the 3rd S2 is
visited.
T6 : S1 … S2 … S2 … S2 … S2 …
T6 = { S1 ; S2[3] };

3.2.4. Sequence AND (&&). The transaction comprising
two sequences using the sequence AND operator holds
only if both sequences hold and complete at the same cycle.
Example 7 In Figure 2(a), similar to T6, T7 is also a
transaction with the state transitions that starts from S1, and
then visits S2 three times (can be non-consecutive).
However, S3 is strictly not allowed showing up in the
sequence T7.
T7 : S1 …(!S3) S2 …(!S3) S2 …(!S3) S2
T7 = { S1 ; {S3[=0]} && S2[3] };

3.2.5. Sequence OR (|). The transaction comprising two
sequences using the sequence OR operator holds if one of
two alternative sequences holds.
Example 8 In Figure 2(a), T8 is a transaction shown
below,
T8 : S1 S3 S4 S1 OR S1 S2 S2 S2 S1
T8 = { {S1;S3;S4;S1} | {S1;S2[*3];S1} };

Note that above two sequences are previously defined as
T1 and T3. Hence, T8 can also be defined in terms of these
named sequences.
T8 = { {T1} | {T3} };

t1:~HSEL
t2:HSEL•(HTRANS=NSEQ)•HRADY
t3:HSEL•(HTRANS=IDLE)•HREADY
t4:HSEL•~HREADY
t5:~HSEL•(HRESP=OKAY)
t6:HSEL•(HTRANS=NSEQ||SEQ)•

HREADY•(HRESP=OKAY)
t7:HSEL•(HTRANS=IDLE||BUSY)•

HREADY•(HRESP=OKAY)
t8:HSEL•~HREADY•(HRESP=OKAY)
t9:HSEL•~HREADY•(HRESP=ERROR)

t10:HSEL•HREADY•(HRESP≠OKAY)
t11:HSEL•(~HREADY+HRESP≠OKAY)
t12:HSEL•(HTRANS=IDLE)•HREADY•

(HRESP=ERROR)
t13:HSEL•(~HREADY+HRESP≠ERROR)

3.2.6. Sequence fusion (:). Similar to the concatenation
operator, a sequence fusion operator concatenates two
sequences overlapping by one cycle.
Example 9 In Figure 2(a), T9 is a transaction shown
below,
T9 : S1 S3 S4 S1 S2 S2 S2 S1
T9 = { S1;S3;S4;S1;S2[*3];S1 };

T9 can also be treated as two sequences that overlap
each other for one cycle as shown below:
T9 : S1 S3 S4 S1 : S1 S2 S2 S2 S1
T9 = { {S1;S3;S4;S1} : {S1;S2[*3];S1} };

Again, T9 can also be defined in terms of T1 and T3.
T9 = { {T1} : {T3} };

3.2.7. Sequence set cross (**). A sequence set cross
operator is used to represent a set of back-to-back
consecutive transactions.
Example 10 Assume the following 8 transactions are
interesting.
{{T1}:{T3}:{T8}}; {{T1}:{T4}:{T8}}; {{T1}:{T3}:{T9}}; {{T1}:{T4}:{T9}};
{{T2}:{T3}:{T8}}; {{T2}:{T4}:{T8}}; {{T2}:{T3}:{T9}}; {{T2}:{T4}:{T9}};

The following expression utilizing the sequence set cross
operator provides a much more elegant but equivalent
representation for the set of 8 interesting transactions.
<{T1},{T2}> ** <{T3},{T4}> ** <{T8},{T9}>;

3.3. SOL examples

To apply our methodology, the interface protocol should
be given as a spec FSM first. The details about how to
construct a spec FSM can be found in [12-13]. The AMBA
AHB slave interface protocol [18] is adopted here to
demonstrate how to define transactions in SOL. The spec
FSM of the simplified AMBA AHB slave protocol is given
in Figure 3.
Example 1 1-beat burst transaction.

A 1-beat burst transaction basically means the given
design moves to the state NSEQ/SEQ (S1) one time and
can not move to the state ERROR (S4), i.e.,
{{S4[=0]} && {S1[1]}}

Figure 3. The spec FSM of the simplified AMBA AHB
slave protocol.

In addition, a 1-beat burst transaction consists of two
cases. One starts from the state ORIG (S0), which indicates
the slave is just selected and going to do the first
transaction. The other starts from the state NSEQ/SEQ
(S1), which implies the slave is already selected and going
to do another transaction. Besides, the signal HBURST
must be set to 0 for a 1-beat burst transaction.
(1) starting from the state ORIG (S0) :
One_S0 = {S0 “HBURST==0”;{S4[=0]}&&{S1[1]}};
(2) starting from the state NSEQ/SEQ (S1) :
One_S1 = {S1 “HBURST==0”;{S4[=0]}&&{S1[1]}};

The 1-beat burst transaction is composed of the sequence
One_S0 and the sequence One_S1 by using a sequence OR
operator. That is,
One = {{One_S0} | {One_S1}};
Example 2 4-beat burst transaction.

Similar to a 1-beat burst transaction, a 4-beat burst one
also consists of two cases. But the design must visit the
state NSEQ/SEQ (S1) four times. The signal HBURST
should also be set to 2 or 3 for a 4-beat transfer.
(1) starting from the state ORIG (S0) :
Four_S0 = {S0“HBURST==2 || HBURST==3”;
{S4[=0]} && {S1[4]}};
(2) starting from the state NSEQ/SEQ (S1) :
Four_S1 = {S1 “HBURST==2 || HBURST==3”;
{S4[=0]} && {S1[4]}};
The 4-beat burst transaction can then be written as,
Four = {{Four_S0} | {Four_S1}};
Example 3 A 4-beat burst transaction instantly followed by
an 8-beat write burst transaction.

A 4-beat burst transaction (i.e., Four) is defined before,
and an 8-beat write burst transaction (i.e., EightWrite) can
also be specified in the similar way. Since the required
transaction can be defined by fusing these two transactions,
it can be written as {{Four}:{EightWrite}}; .

4. Experiments

4.1. Experimental environment

To demonstrate our methodology, we choose the AMBA
AHB slave interface protocol [18] as an example. The spec
FSM of the simplified AHB slave protocol is given in
Figure 3. Figure 4 illustrates the experimental environment
used in this work. It consists of three parts: a DUV, a
constraint-driven random pattern generator, and the
proposed verification framework.
(1) The experiments are conducted over three real AHB
slave designs. The basic information of these designs is
shown in Table 1. The design RGB2YCrCB is an RGB-to-
YCrCB color space converter. The design MAC is a
multiply-accumulator. The design Convolution is a
convolution calculator to be used in discrete wavelet
transfer.
(2) The constraint-driven random pattern generator is an
AHB master which generates verification patterns based on

Interface Wrapper

DUV (Slave)
IP

Weight
Info. Pattern

Generator
(Master)Spec

NEFSM

Translator

Coverage
Analyzer

Checker
(Monitor)

Transaction
Scenarios
using SOL

Coverage
Report

Spec
FSM

Static Biasing

Interface Wrapper

DUV (Slave)
IP

Weight
Info. Pattern

Generator
(Master)Spec

NEFSM

Translator

Coverage
Analyzer

Checker
(Monitor)

Transaction
Scenarios
using SOL

Coverage
Report

Spec
FSM

Translator

Coverage
Analyzer

Checker
(Monitor)

Transaction
Scenarios
using SOL

Coverage
Report

Spec
FSM

Static Biasing

Figure 4. Experimental environment.

an NEFSM (Non-deterministic Extended FSM) with the
weighted state transitions. The weight of each transition is
configurable. The transitions are assigned with an equal
weight initially.
 (3) We develop a translator which accepts the spec FSM
and user-defined SOL transactions then produces the
corresponding coverage analyzer. The reported coverage is
used to help statically bias the random pattern generator to
create more effective verification patterns.

4.2. Experimental results

Two experiments are conducted: coverage comparison
and efficiency improvement. In the first experiment, four
coverage results (state, state transition, M-path, and our
transaction coverage) are compared for three designs,
respectively. In the second experiment, the coverage
information is sent back to bias the random pattern
generator to produce more effective patterns.

4.2.1. Coverage comparison
Case 1. The interesting transactions are defined as 10 basic
read and write transactions, e.g., {OneRead};,
{OneWrite};, {FourRead};, etc.

The comparison results are shown in Table 2. For the
design RGB2YCrCb, it takes 4/16/82/492 cycles to reach
100% state/transition/M-path/transaction coverage. As the
state/transition/M-path coverage reach 100%, the
transaction coverage is only 0/10/20%. For the other two
designs, the results are similar. It is observed that the
transaction coverage is very low while the other three
coverage metrics reach 100%.

Table 1. Design information.
Design Supported AHB

responses
of

state/transition/M-path
RGB2YCrCb OKAY 3 / 8 / 14

MAC OKAY, ERROR 4 / 10 / 12
Convolution OKAY (wait) 4 / 10 / 16

Table 2. Coverage comparison for Case 1.
Design Coverage # of cycles to

reach 100%
Transaction

coverage (%)
State 4 0 (0/10)

Transition 16 10 (1/10)
M-path 82 20 (2/10)

RGB2YCrCb

Transaction 492 100 (10/10)

Design Coverage # of cycles to
reach 100%

Transaction
coverage (%)

State 61 30 (3/10)
Transition 61 30 (3/10)

M-path 33 10 (1/10)
MAC

Transaction 9644 100 (10/10)

Design Coverage # of cycles to
reach 100%

Transaction
coverage (%)

State 12 10 (1/10)
Transition 47 20 (2/10)

M-path 102 30 (3/10)
Convolution

Transaction 787 100 (10/10)

Case 2. Make the interesting transactions more complex by
adding 15 more transactions with BUSY/WAIT (e.g.,
{OneWithWAIT};,{FourWithBUSY};,etc.) and 25 consecutive
transactions (e.g., <{Incr},{One},{Four},{Eight},{Sixteen}>**
<{Incr},{One},{Four},{Eight},{Sixteen}>;).

The comparison results are shown in Table 3. For the
design Convolution, it still takes 12/47/102 cycles to reach
100% state/transition/M-path coverage. But it takes 11135
cycles to reach 100% transaction coverage. As the
state/transition/M-path coverage reach 100%, the
transaction coverage is only 4/8/12%. It is shown that the
transaction coverage is even lower than that in Case 1 as
the other three coverage metrics reach 100%.

We get some conclusions from the above 2 cases. While
the set of interesting transactions becomes larger and more
complex, it needs a significantly (non-linearly) longer
simulation time to reach 100% transaction coverage.
Moreover, even the state/transition/M-path coverage reach
100%, the transaction coverage can still be extremely low.
The situation is getting worse when more complicated
transactions are concerned. It means that even a pattern set
developed to reach 100% state/transition/M-path coverage
may not provide a satisfied functional coverage.
Experimental results exactly show that the classical
coverage metrics are not capable of providing enough
verification quality.

4.2.2. Efficiency improvement
After analyzing the coverage report of 4.2.1 Case 2, we

find the major reason why so many cycles are required to
reach 100% transaction coverage is the seldom occurrence
of BUSY transactions. Hence, it is possible to reduce the
simulation time by statically biasing the pattern generator.
The biasing information is shown in Table 4.

In bias1, we intuitively increase the weights of
transitions that can generate BUSY transactions. This
biasing indeed decreases the simulation time to 1864 cycles,
which is only 16.7% of the original one. In bias2, the
weights of INCR burst, 1-beat burst, 4-beat burst, 8-beat

Table 3. Coverage comparison for Case 2.
Design Coverage # of cycles to

reach 100%
Transaction

coverage (%)
State 12 4 (2/50)

Transition 47 8 (4/50)
M-path 102 12 (6/50)

Convolution

Transaction 11135 100 (50/50)

Table 4. Efficiency improvement.
Design Bias # of cycles to

reach 100% Factor

equal weight 11135 1
bias1 1864 0.167 Convolution

bias1 + bias2 981 0.088

burst, and 16-beat burst are given in decreasing order
because the BUSY transaction takes place more frequently
in long-beat transfers. Combining bias1 with bias2, the
simulation time can be further decreased to 981 cycles,
which is only 8.8% of the original one.

The results show that the coverage information can help
bias the random pattern generator to create more effective
patterns and help verify the DUV in a shorter time. This
technique is extremely useful while developing a regression
verification environment in which the compact and
effective pattern suites are crucial to minimize the required
simulation time. That is, the proposed methodology can
increase the efficiency of the regression verification
process.

5. Conclusions

In the paper, we propose an FSM-based transaction-level
functional coverage methodology for interface compliance
verification. To provide a familiar, user-friendly, but still
rigorous, and systematic way to specify transactions at a
higher FSM level, we develop a PSL-like transaction
description language SOL. The expressive power of SOL is
generally stronger than that of previous regular-expression-
based approaches. It is shown that SOL is capable of
modeling very complicated functional transactions.
Meanwhile, a translator is also developed to automatically
convert a set of SOL-based transactions with the spec FSM
into the corresponding functional coverage analyzer. The
experimental results demonstrate that the proposed
methodology can indeed improve the verification quality as
well as increase the efficiency of regression verification. In
a near future, we plan to develop a technique that can
automatically and dynamically bias the pattern generator by
instantly analyzing the functional coverage on-the-fly and
then integrate this technique into our methodology.

References

[1] M. Keating and P. Bricaud, “Reuse Methodology Manual for
System-On-A-Chip Designs, 3rd Edition,” Kluwer Academic
Publishers, July 2002.

[2] J. Bergeron, “Writing Testbenches: Functional Verification
of HDL Models, 2nd Edition,” Kluwer Academic Publishers,
February 2003.

[3] D. Drako and P. Cohen, “HDL Verification Coverage,”
Integrated System Design Magazine, pp. 46-52, June 1998.

[4] F. Fallah, S. Devadas, and K. Keutzer, “OCCOM: Efficient
Computation of Observability-Based Code Coverage Metrics
for Functional Verification,” Proceedings of the Design
Automation Conference, pp. 152-157, June 1998.

[5] P. A. Thaker, V. D. Agrawal, and M. E. Zaghloul,
“Validation Vector Grade (VVG): A New Coverage Metric
for Validation and Test,” Proceedings of the IEEE VLSI Test
Symposium, pp. 182-188, April 1998.

[6] B. Min and G. Choi , “ECC: Extended Condition Coverage
for Design Verification Using Excitation and Observation,”
Proceedings of the Pacific Rim International Symposium on
Dependable Computing, pp. 183-190, December 2001.

[7] R. Grinwald, E. Harel, M. Orgad, S. Ur, and A. Ziv, “User
Defined Coverage - A Tool Supported Methodology for
Design Verification,” Proceedings of the Design Automation
Conference, pp. 158-163, June 1998.

[8] S. Asaf, E. Marcus, and A. Ziv, “Defining Coverage Views
to Improve Functional Coverage Analysis,” Proceedings of
the Design Automation Conference, pp. 41-44, June 2004.

[9] A. Ziv, “Cross-product Functional Coverage Measurement
with Temporal Properties-based Assertions,” Proceedings of
the Design, Automation and Test in Europe Conference and
Exhibition, pp. 834-839, March 2003.

[10] Y.-S. Kwon, Y.-I. Kim, and C.-M. Kyung, “Systematic
Functional Coverage Metric Synthesis from Hierarchical
Temporal Event Relation Graph,” Proceedings of the Design
Automation Conference, pp. 45-48, June 2004.

[11] Y.-S. Kwon and C.-M. Kyung, “Functional Coverage Metric
Generation from Temporal Event Relation Graph,”
Proceedings of the Design, Automation and Test in Europe
Conference and Exhibition, pp. 670-671, February 2004.

[12] Y.-C. Yang, J.-D. Huang, C.-C. Yen, C.-H. Shih, and J.-Y.
Jou, “Formal Compliance Verification of Interface
Protocols,” Proceedings of the IEEE International
Symposium on VLSI Design, Automation, and Test, pp. 12-15,
April 2005.

[13] H.-M. Lin, C.-C. Yen, C.-H. Shih, and J.-Y. Jou, “On
Compliance Test of On-Chip Bus for SOC,” Proceedings of
the Asia and South Pacific Design Automation Conference,
pp. 328-333, January 2004.

[14] K. Ara and K. Suzuki, “A Proposal for Transaction-Level
Verification with Component Wrapper Language,”
Proceedings of the Design, Automation and Test in Europe
Conference and Exhibition, pp. 82-87, March 2003.

[15] C. Browy, “Comparing TestWizard and Specman for
Transaction-level Verification,” white paper, available at
http://www.avery-design.com/twwp.html.

[16] H.-J. Schlebusch, G. Smith, D. Sciuto, D. Gajski, C.
Mielenz, C. K. Lennard, F. Ghenassia, S. Swan, and J.
Kunkel, “Transaction based design: Another Buzzword or
the Solution to a Design Problem?,” Proceedings of the
Design, Automation and Test in Europe Conference and
Exhibition, pp. 876-877, March 2003.

[17] Property Specification Language – Language Reference
Manual, Ver. 1.1, http://www.eda.org/vfv/docs/PSL-v1.1.pdf.

[18] ARM Limited, AMBA Specification (Rev 2.0), May 1999.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

