
An Unconditional Stable General Operator Splitting Method for Transistor Level
Transient Analysis

Zhengyong Zhu, Rui Shi, Chung-Kuan Cheng
Department of Computer Science and Engineering

University of California, San Diego
La Jolla, CA 92093

Email: {zzhu,rshi,kuan}@cs.ucsd.edu

Ernest S. Kuh
Department of Electrical Engineering and Computer Sciences

University of California, Berkeley
Berkeley, CA 94720

Email: kuh@eecs.berkeley.edu

Abstract— In this paper, we introduce a general operator
splitting method for transient simulation of VLSI circuits. The
proposed approach generates special partitions of the circuits
and alternates the explicit and implicit integrations between
the partitions. We prove that the method is unconditionally
stable independent of the step size. The splitting scheme greatly
reduces the nonzero fill-ins generated in direct methods like
LU decomposition. Orders of magnitude speedup over Berkeley
SPICE3 is observed for sets of circuits.

I. INTRODUCTION

With increasing design complexity, huge size of extracted
interconnect data is pushing the capacity of transistor level
simulation tools to the limits. Direct methods like Gaussian
Elimination used in Berkeley SPICE and its variations is
prohibitive because of the above linear complexity O(n1.5)
where n is the number of circuit nodes.

In last decade, there is rich literature in the field of circuit
analysis to improve the performance of simulation under the
rising demand from advanced technologies. Among them,
Conjugate Gradient Method and Multigrid Method were used
on linear networks [3]–[5]. Model order reduction methods [1],
[2] reduced the circuit size by generating stable and passive
macromodels in time domain simulation. For timing analysis,
Acar et al. [6] introduced a waveform evaluation engine using
Successive Chord and macromodeling approach.

At transistor level, Sakallah and Directors [7] saved unnec-
essary computation by applying different integration method
(explicit or implicit) on subcircuits according to their activities.
Li and Shi [11] tried to reduce the number and cost of LU de-
compositions by using low cost integration approximation and
Successive Chord Method with approximated device model.

Since direct methods such as LU decomposition remain to
be efficient for small circuits with up to tens of thousands of
nodes, partition-based simulation methods are widely used in
commercial tools [8]–[10]. However, the convergence of those
methods cannot be guaranteed and is sensitive to the partition
algorithm and propagation order.

The operator splitting method has been adopted to partition
the system based on the geometry of the physical adjacency
and the locality of the processes. In 1999, Namiki and Ito [16]
adopted its special form, the Alternating Direction Implicit
(ADI), to simulate a two dimensional electromagnetic wave.
They demonstrated the unconditional stability of the finite

difference time domain analysis independent of the time step
size under the proposed geometric structure. Later, Zheng et
al extended the structure to three dimensions [13]. Since then,
the method has been applied to tackle huge problems for finite
difference time domain analysis [18]. In 2001 and 2003, Lee
and Chen proposed TLM-ADI approach [14], [15] for power
grid analysis, based on implicit FDTD methods. In 2003, Guo
and Tan applied the ADI method to circuit-level power grid
analysis [20], which splits power mesh along horizontal and
vertical directions and iterates between partitions at each time
point till converge with fixed time step size.

In this paper, we present a generalized operator splitting
method and demonstrate that the generalized method is un-
conditionally stable. Following the generalized approach, we
partition the circuits using a network splitting algorithm with
guaranteed DC paths and alternate the explicit and implicit
integrations between the partitions. The splitting algorithm
partitions the circuit into structures that produces much fewer
nonzero fill-ins during LU factorization. Thus direct methods
can remain efficient for large-scale circuits. Unlike [20], the
proposed approach has no geometrical constrains and can
handle general circuits. We can also prove that there is no
iteration needed between partitions at each time point since the
operator splitting approach is actually an A-stable numerical
integration method and the local truncation error can be
controlled by dynamic time step estimation.

The rest of this paper is organized as follows. General
operator splitting method and its application on linear and
nonlinear circuits are discussed in section II. Section III proves
the unconditional stability of the proposed method. Section
IV discusses the local truncation error (LTE) estimation and
dynamic time step control. Experimental results are then
demonstrated in section V. The paper is wrapped up with
conclusion and future directions.

II. GENERAL OPERATOR SPLITTING METHOD

The operator splitting method [17] was first introduced as a
technique for solving partial differential equations. The basic
idea of operator splitting can be explained with the following
initial value problem (IVP) of a simple ordinary differential
equation (ODE) [19],

δu

δt
= Lu (1)

where L is a linear or nonlinear operator and can be written
as a linear sum of m suboperators of u,

Lu = L1u + L2u + · · · + Lmu (2)

Suppose U1, U2, · · · , Um are updating operators on u with
respect to L1, L2, · · · , Lm from time step n to time step n + 1,
the operator splitting approach has the form of:

un+(1/m) = U1(u
n, h/m)

un+(2/m) = U2(u
n+(1/m), h/m)

· · ·
un+1 = Um(un+(m−1)/m, h/m)

(3)

where each partial operation acts with all the terms of the
original operator.

Our invention introduced in the next subsection generalizes
the operator splitting method to graph based modeling. The
generalization frees us from the geometry or locality con-
straints. We prove that the method is unconditionally stable.

A. Formulation

We use a general circuit system to describe our operator
splitting method. The circuit contains resistors, capacitors,
and inductors with mutual couplings. For linear circuits, the
modified nodal analysis using Backward Euler Integration can
be expressed as below:

[
C

h
+ G −AT

A L

h
+ R

] [
V (t + h)
I(t + h)

]
=

[
C

h
0

0 L

h

] [
V (t)
I(t)

]
+U(t+h)

(4)

where C, L, R, G are the matrices of capacitances, inductances,
resistances, and conductances. Matrix A is an incidence matrix
linking between the topology of capacitance nodes and in-
ductance branches.Vectors V , I, and U describes the voltages
of capacitance nodes, currents of inductance branches, and
system inputs. Scalar h is the time step from time t to t+h. Note
that the four matrices, C, L, R, and G, are symmetric by con-
struction and are positive semidefinite because the elements:
capacitances, inductances, resistances, and conductances, are
non-active. In addition, we can assume that matrices C and L

are positive definite for a nondegenerated case.
The generalized operator splitting formulation allows us

to make arbitrary partitions of the circuit. Thus, we have
corresponding partitions of matrices A, R, and G, i.e. A =

A1 + A2, R = R1 + R2 and G = G1 + G2. By construction,
matrices Ri and Gi for i ∈ {1, 2} remain to be symmetric
and positive semidefinite. Following the circuit partition, we
divide the integration into two half steps and alternates the
forward and backward integrations between the partitions as
shown in formulation (5). In the first half step, we use forward
integration for the subcircuit with matrices A2, G2 and R2.
Then, in the second half step, we use forward integration
for the subcircuit with matrices A1, G1 and R1. In both half
steps, the other partition is integrated by backward implicit

integration.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
2C

h
+ G1 −AT

1

A1
2L

h
+ R1

] [
V (t + h

2)
I(t + h

2)

]
=

[
2C

h
− G2 AT

2

−A2
2L

h
− R2

] [
V (t)
I(t)

]
+ U(t + h

2)

[
2C

h
+ G2 −AT

2

A2
2L

h
+ R2

] [
V (t + h)
I(t + h)

]
=

[
2C

h
− G1 AT

1

−A1
2L

h
− R1

] [
V (t + h

2)
I(t + h

2)

]
+ U(t + h)

(5)

If the two left-hand-side matrices correspond to trees or
forest structures, a direct matrix inversion will be very efficient
to solve those two equations because there is no nonzero fill-
ins and the computational cost is linearly proportional to the
number of elements.

Let P1 =

[
G1 −AT

1
A1 R1

]
, P2 =

[
G2 −AT

2
A2 R2

]
, S =[

2C

h
0

0 2L

h

]
, and X =

[
V
I

]
then the notation of the two half

step of operator splitting formulation (5) can be simplified as:

⎧⎨
⎩

(P1 + S)X(t + h

2) = −(P2 − S)X(t) + U(t + h

2)

(P2 + S)X(t + h) = −(P1 − S)X(t + h

2) + U(t + h)
(6)

B. Splitting Operation

Start from VDD/GND Node

BFS search

Divide the resistors into two partitions according to rules

Post processing to gurantee DC path

Output two partition

Fig. 1. Splitting Algorithm Flow

1) Network Splitting with Guaranteed DC Paths: The per-
formance of direct methods such as LU decomposition can still
beat those of iterative methods for small circuits with up to
tens of thousands of nodes. Direct methods become prohibitive
for large circuits because of the significant amount of nonzero
fill-ins generated during factorization. However, it can be
proved that the LU decomposition method does not create
nonzero fill-ins for circuits in tree/forest structure if nodes
elimination always starts from leaves. The elimination order
can be captured by ordering algorithms based on minimum
degrees. Following this observation, the proposed operator
splitting algorithm tries to split the circuits into two partitions
in structures close to tree or forests such that the number of
nonzero fill-ins is minimized. Even though general circuits
may not be able to get optimized partitions in terms of the
number of nonzero fill-ins because of its structure limitation
or the restriction of DC paths (Splitting algorithm should not
generate floating nodes at DC stage), the number of overall
nonzero fill-ins is significantly reduced for most circuits.

(a) Example of a Simple Digital Circuit (b) Undirected Graph Representation (c) Splitting Result of The Undirected Graph

Fig. 2. Example for Undirected Graph Representation and Splitting

2) Applications on Linear Circuits: Only resistive connec-
tions are considered during partition. Capacitors and inductors
are duplicated into both partitions. Resistors are divided into
two partitions using graph theory algorithms. In order to obtain
DC convergence, some adjustments are needed to ensure that
every node in both partitions has a DC path to some voltage
source. When solving each partition, the rest of circuit is
modelled as equivalent current sources, following the operator
splitting formulation (5). Detailed algorithm is discussed in
section II-B.1.

3) Applications on Circuits with transistors: We extend the
algorithm to handle circuits with transistors. In typical digital
circuits, transistors are grouped as various gates. Taking into
consideration the nonlinear property of transistor devices and
gates, the proposed approach does not split a single transistor
or gate into different partitions; instead, each partition has a
full-version of all transistor devices. In other words, transistor
devices are duplicated in both partitions and solved at every
half time point.

The splitting algorithm actually regards each gate as a super
node. The details inside each gate are invisible to the splitting
algorithm. The same splitting operation for linear circuits is
applied on the super node structure instead of the original
circuits.

Moreover, the introduction of super node brings some
advantages during LU decomposition if all the internal nodes
in one gate are eliminated together. Even though each gate
may have many internal nodes, it usually has only a few
input/output nodes connecting to the outside, which implies
that the nonzero fill-ins are confined inside each gate and will
not propagate to outside if all the internal nodes in the same
gate are eliminated together during LU decomposition. How-
ever, the ordinary minimum degree algorithm or the Markowitz
Product method used in SPICE3 does not have a global view of
the circuit structure and introduce many unnecessary nonzero
fill-ins. We modified the ordering algorithm in SPICE3 to
incorporate the super node concept.

We define an undirected graph G = (V,E) to represent the
circuit structure. There are two kinds of nodes in this graph:
super node and branch node. Super node denotes end point of
resistors in large linear networks or a single gate. Branch node
represents end point of resistors on signal wires connecting
gates in the circuit. The edge denotes the resistor branch in
the circuit since only resistors are divided into partitions.

Figure 2 gives the undirected graph representation of a

simple digital circuit. The original circuit shown in Figure 2(a)
is mapped to an undirected graph in Figure 2(b). Figure 2(c)
demonstrates one possible splitting result of the graph, where
dashed lines and solid lines denote two different partitions.

The splitting algorithm divides the graph into two partitions.
The objective is to minimize the total number of non-zero
fill-ins of both partitions generated in LU decomposition.
The basic idea of our rule-based splitting algorithm is to
distribute the edges of every node into different partitions and
avoid loops as much as possible, because sparse and tree-like
structures produce much fewer nonzero fill-ins.

Figure 1 summarizes the splitting algorithm flow. The
input information includes the undirected graph, super node
identification and VDD/GND nodes set. There are two main
steps, breath first search (BFS) partition and DC path post-
processing. In the BFS partition step, we start from VDD/GND
nodes simultaneously, go through all the nodes in the graph
using BFS and divide the edges of every node into two
partitions according to the partition rules defined below. Nodes
and edges are associated with labels to record the partition and
DC path connection status. Based on the labelling information,
the partition rules are defined to benefit DC path available for
all nodes. In the post-processing step, we adjust the partition
for nodes without a DC path to VDD/GND.

We define seven types of node labels: CON-
NECTED, UNCONNECTED, ZERO UNCONNECTED,
ONE UNCONNECTED, ZERO ONE UNCONNECTED,
ZERO CONNECTED, ONE CONNECTED, where “ZERO”
and “ONE” represent different partitions. The label describes
the partition and DC path status of the node. For example, label
“ZERO UNCONNECTED” means the node has an edge in
partition ZERO without a DC path to VDD/GND. Similarly,
we define five types of edge labels: UNCONNECTED,
ZERO UNCONNECTED, ONE UNCONNECTED,
ZERO CONNECTED, ONE CONNECTED.

There are four partition rules for the splitting process.

1) Branch rule: the edges in one branch belong to the same
partition. In the undirected graph, a branch is consisted
of edges connected by branch nodes. Branch rule assigns
nodes on the same signal wires into one partition, which
will accelerate the nonlinear convergence.

2) Degree rule: the edges of node with degree two should
be assigned to the same partition. This is because the
line structure would not cause many non-zero fill-ins and
will be propitious to provide DC path in both partitions.

3) Loop rule: the loop will be avoided in both partitions
if possible. Edge loops will potentially introduce certain
number of non-zero fill-ins.

4) Balance rule: the edges for each node in the graph
will be evenly divided into two partitions. Thus, each
partition will be much simpler than the original graph.

As an example, Figure 3 illustrates the step by step splitting
process on a 6x6 mesh shown in Figure 3(b). The legend used
to represent different types of nodes and edges is given in
Figure 3(a). Figure 3(c) - 3(g) reveal the stepwise changes of
splitting status for all the nodes and edges in BFS partition
stage. Figure 3(h) gives the final splitting result after the
post-processing step. Both partitions in the final result have
a tree/forest structure, which will greatly benefits the LU
decomposition.

III. UNCONDITIONAL STABILITY ANALYSIS

For the analysis of the error propagation, we can ignore
the inputs in the operator splitting formulation (5). We then
combine the two half steps and reduce the two equations (5)
to a recursive formula

X(k+1) = ΛX(k) (7)

where Λ = (P2 + S)−1(P1 − S)(P1 + S)−1(P2 − S).
In the proof of the convergence, we use the norm ‖x‖s−1 =

(xT S−1x)1/2. Note that matrix S−1 is positive definite be-
cause matrix S is positive definite and the inverse of a positive
definite matrix remains to be positive definite. We first state
the theorem of the unconditional stability. The proof of the
statement is assisted by the lemmas which follow the theorem.

Theorem 3.1: The operator splitting formula (5) is stable
independent of the step size h
Proof: Let ρ(Λ) = max(|λi(Λ)|), where λi(Λ) is the ith eigenvalue
of matrix Λ. The proposed operator splitting approach is stable
if ρ(Λ) <= 1.

From Lemma 3.4, we have
‖(P1 − S)(P1 + S)−1x‖

S−1 ≤ ‖x‖
S−1 and

‖(P2 − S)(P2 + S)−1x‖
S−1 ≤ ‖x‖

S−1 .
Let ρ(Λ̃) = (P1 − S)(P1 + S)−1(P2 − S)(P2 + S)−1

From Lemma 3.2 and 3.3, we can deduce: ρ(Λ) = ρ(Λ̃) ≤ 1.
Lemma 3.2: ρ((P2 + S)−1(P1 − S)(P1 + S)−1(P2 − S)) = ρ((P1 −

S)(P1 + S)−1(P2 − S)(P2 + S)−1)

Proof: We can derive that ρ(AB) = ρ(BA) if matrix A or B is
nonsingular. Thus, we prove the lemma by setting A = (P2 +

S)−1 and B = (P1 − S)(P1 + S)−1(P2 − S).
Lemma 3.3: Given a real matrix M , if ‖Mx‖

S−1 ≤ γ‖x‖
S−1

for all real x, then ρ(M) ≤ γ.
The proof can be found in [12].

Lemma 3.4: ‖(Pi − S)(Pi + S)−1x‖2
S−1 ≤ ‖x‖2

S−1 for i ∈ {1, 2}

and every real vector x.
Proof:

‖(Pi − S)(Pi + S)−1x‖2
S−1 ≤ ‖x‖2

S−1 is equivalent to ‖(Pi −

S)y‖2
S−1 ≤ ‖(Pi + S)y‖2

S−1 where y = (Pi + S)−1x

We expand the inequality expression according to the defi-
nition of the norm.

y
T

(P
T

i
− S

T
)S

−1
(Pi − S)y ≤ y

T
(P

T

i
+ S

T
)S

−1
(Pi + S)y (8)

We expand the product terms and cancel the common items
on the two sides of the inequality. The expression is reduced
to:

y(Pi + P
T

i
)y

T
≥ 0 (9)

which is true since Pi+P T

i
is positive semidefinite for i ∈ {1, 2}.

IV. LOCAL TRUNCATION ERROR AND TIME STEP

CONTROL

Though the general operator splitting approach is A-stable,
the local truncation error still need to be controlled below the
error tolerance in order to ensure the accuracy. By estimating
the local truncation error at each time point, we can dynami-
cally adjust the time step to control the local truncation error.

Given the system equation before numerical integration
(10), [

C 0
0 L

] [
V̇ (t)

İ(t)

]
=

[
−G AT

−A −R

] [
V (t)
I(t)

]
+ U(t) (10)

Let M =

[
C 0
0 L

]
, N =

[
−G AT

−A −R

]
and ignore the input

vector U , Equation (10) can be simplified as:

MẊ = NX

Ẋ = M−1NX
(11)

Here, we regard the system equations above as circuit state
equations for the sake of clarity, which implies that matrix M

is non-singular in the following derivation.
The exact analytic solution X with time step h can be

derived as below:

Xn+1 = eM
−1

NhXn

= (1 + M−1Nh +
h
2(M

−1
N)2

2 +
h
3(M

−1
N)3

6 + O(h4))Xn

(12)

The general operator splitting approach can also be formulated
as:

M

h
(X̂n+1 − Xn) = N1X̂n+1 + N2Xn (13)

where N = N1 + N2, N1 represents the the partition applied
Backward Euler and N1 denotes the partition applied forward
Euler integration method.

The analytic solution of operator splitting approach is
derived as below:

(
M

h
− N1)X̂n+1 = (

M

h
+ N2)Xn (14)

X̂n+1 = [I + hM
−1

N + h
2
M

−1
N1M

−1
N + O(h

3
)]Xn (15)

The local truncation error is the difference of operator splitting
solution X̂ and exact solution X:

LTE = ‖h
2
M

−1
(N

2 − N1)Ẋn + O(h
3
)‖ (16)

The local truncation error at each time step should not exceed
the error tolerance. If we ignore the high order terms of local
truncation error, the time step when forward Euler integration
is applied to partition corresponding to N1 is estimated as:

h1 <

√
Error Tolerance

‖M−1(N

2 − N1)Ẋn‖
(17)

Similarly,the time step when forward Euler integration is
applied to partition corresponding to N2 is estimated as:

h2 <

√
Error Tolerance

‖M−1(N

2 − N2)Ẋn‖
(18)

(a) Node and Edge Labels (b) 6 by 6 Mesh. (c) Splitting Step 1 (d) Splitting Step 2

(e) Splitting Step 3 (f) Splitting Step 4 (g) Splitting Step 5 (h) Final Splitting Result

Fig. 3. 6x6 mesh splitting

 0.95

 0.955

 0.96

 0.965

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 1

 0 2e−09 4e−09 6e−09 8e−09 1e−08

V
o
lt

ag
e

(V
)

Time (sec)

Berkeley Spice3
Operator Splitting

Fig. 4. Transient Response of Circuit3

And the new time step h is twice of the minimum time step
of each partition:

h = 2min(h1, h2) (19)

Our experiment shows that the operator splitting time step size
is about 25% of the original SPICE time step size.

V. EXPERIMENTAL RESULTS

The proposed approach is implemented in C programming
language. For all circuits presented in this section we compare
the proposed approach with Berkeley SPICE3 using BSIM3
models for transistor devices. We did not compare the result
with commercial fast simulators because we do not trade any
accuracy for speed. Convergence and accuracy are guaranteed.
Examples are tested on a Linux machine with 2.6 GHz CPU
and 4 Gigabytes memory.

A. Power Network with Nonlinear Current Sinks

We test a number of RLC power networks with size ranging
from 11k nodes to 160k nodes. Various transistor gates draw
current from the power networks. Those power networks
are approximately in mesh structures. The splitting algorithm
results in very limited nonzero fill-ins and we observe linear
runtime of the proposed method. The CPU runtime is given in

 1.7965

 1.797

 1.7975

 1.798

 1.7985

 1.799

 1.7995

 1.8

 1.8005

 0 0.5 1 1.5 2

V
o
lt

ag
e

(V
)

Time (1e−8sec)

Berkeley Spice3
Operator Splitting

Fig. 5. Voltage Drop of RLC Power and Clock Network Example

Table I. Orders of magnitude speedup (8.1x to 58.2x) against
SPICE3 is obtained. The transient waveform circuit3 is given
in Figure 4.Since we only replace the LU decomposition
procedure inside the SPICE3, other overhead such as device
evaluation and dynamic time step control take more than 30%
of the total runtime, thus limits the overall speedup.

B. Power and Clock Network

The Power and clock network case contains an RLC power
ground network and a two-level H-tree clock. Figure 5 shows
the voltage drop at one node of the power network. Transient
simulation of 10ns is completed in 649.5 seconds, which is
18.5 times faster than SPICE3 as shown in Table I.

C. Large Power Network Example

This example contains a huge RC power network (0.6
million nodes) with very irregular structure (some nodes have
thousands of neighbors). The switching activities that draw
current from the power network are modeled as piecewise
linear current waveform. Berkeley SPICE3 fails to execute due
to the capacity limit. The operator splitting approach finished
the transient analysis of 10ns in just 4083 seconds. Figure 6
illustrates the voltage drop of a node on on the power network.

TABLE I

TRANSIENT SIMULATION RUNTIME

Examples circuit1 circuit2 circuit3 circuit4 Power/Clock Power Network 1K-cell 10K-cell
#Nodes 11,203 41,321 92,360 160,657 29,100 615,446 10,200 123,600

#Transistors 74 512 1,108 2,130 720 0 6,500 69,000
Simulation Period 10ns 10ns 10ns 10ns 10ns 10ns 20ns 20ns

SPICE3(sec) 602.44 8268.92 39612.32 N/A 12015 N/A 2121 44293
Operator Splitting(sec) 74.64 305.38 681.18 1356.21 649.5 4083.7 415.9 3954.7

Speedup 8.1x 27.1x 58.2x N/A 18.5x N/A 5.1x 11.2x

 1.55

 1.56

 1.57

 1.58

 1.59

 1.6

 1.61

 0 2e-09 4e-09 6e-09 8e-09 1e-08

V
ol

ta
ge

 (
V

)

Time (sec)

Fig. 6. Voltage drop on the power network

−0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5e−09 1e−08 1.5e−08 2e−08

V
o
lt

ag
e

(V
)

Time (sec)

Berkeley Spice3
Operator Splitting

Fig. 7. Transient Waveform of 1K cell Design

D. ASIC designs

Two 1K and 10K cells ASIC designs are tested to demon-
strate the proposed approach’s ability of handling transistor
dominated circuits. The 1k cell circuit has 10,200 nodes and
6,500 transistors. The 10k cell circuit has 123,600 nodes and
69,000 transistors. We assume that ideal power and ground
supply is provided in those RC examples. The proposed
approach takes 415.9 seconds for 1K cell circuit and 3954.7
seconds for 10K cell circuit to finish 20ns transient simula-
tions. The speedup over SPICE3 is 5.1x and 11.2x for these
two examples (Table I). We observe accurate waveform match
for both examples. Figure 7 shows the transient waveform of
a gate output in the 1K cell design.

VI. CONCLUSION

In this paper, we introduce an general unconditional stable
operator splitting method for transistor level transient simu-
lation. Orders of magnitude speedup over Berkeley SPICE3
is observed. Experimental results demonstrate accurate wave-
form match with SPICE3.

REFERENCES

[1] P. Feldmann, R. W. Freund, “Reduced-Order Modeling of Large
Linear Subcircuits via a Block Lanczos Algorithm,” DAC, pp.
376–80, 1995.

[2] A. Odabasioglu, M.Celik, and L.T. Pileggi, “PRIMA: Passive
Reduced-Order Interconnect Macromodeling Algorithm,” IC-
CAD, 1997.

[3] Z. Zhu, B. Yao, and C.K. Cheng, “Power Network Analysis
Using an Adaptive Algebraic Multigrid Approach,” DAC, pp.
105-108, 2003

[4] J. N. Kozhaya, S. R. Nassif, F. N. Najm, “Multigrid-like Tech-
nique for Power Grid Analysis,” ICCAD, pp. 480-487, 2001

[5] T. Chen and C. Chen, “Efficient Large-Scale Power Grid
Analysis Based on Preconditioned Krylov-Subspace Iterative
Methods,” DAC, pp.559-562, 2001.

[6] E. Acar, F. Dartu and L. T. Pileggi, “TETA: Transistor level
Waveform Evaluation for Timing Analysis,” IEEE Trans. on
Computer-Aided Design, Vol. 21, No. 5, May 2002

[7] K.A.Sakallah and S.W.Director,“SAMSON2: An Event Driven
VLSI Circuit Simulator,” IEEE Trans. on Computer-Aided De-
sign of ICs and Sytems, vol. 4(4), pp. 668-684, October 1985.

[8] www.nassda.com/hsim.html
[9] www.synopsys.com/products/mixedsignal/nanosim

[10] www.cadence.com/products/custom ic/ultrasim/
[11] Z. Li, C. J. Shi, “SILCA: Fast-Yet-Accurate Time-Domain

Simulation of VLSI Circuits with Strong Parasitic Coupling
Effects,” ICCAD, pp.793-799, 2003

[12] E. L. Wachspress and G. J. Habetler, “An alternating-direction-
implicit iteration technique,” J. Soc. Ind. and Appl. Math. 8,
403-424(1960)

[13] F. Zheng, Z. Chen, J. Zhang, “Toward the development of a
three-dimensional unconditionally stable finite-difference time-
domain method,” IEEE Tran. Microwave Theory and Tech-
niques, vol 48, No. 9, Sep 2000

[14] Y.-M Lee and C.P. Chen. “Power grid transient simulation
in linear time based on transmission-line-modeling alternating-
direction-implicit,” ICCAD 75-80, 2001.

[15] Y.-M Lee and C.P. Chen. “The power grid transient simulation
in linear time on 3D alternating-direction-implicit,” Date 2003

[16] T. Namiki and K. Ito, “New FDTD algorithm free from the CFL
condition restraint for a 2D-TE wave,” IEEE Antennas Propagat.
Symp. Dig., pp, 192-195, July 1999.

[17] W. F. Ames, “Numerical Methods for Partial Differential Equa-
tions,” 2nd ed. New York Academic Press, 1977

[18] W. Sui, “Time-Domain Computer Analysis of Nonlinear Hybrid
Systems,” CRC Press, 2002.

[19] W. H. Press, S. A. Teukolsky,W. T. Vetterling, “Numerical
Recipe in C,” 2nd ed. Cambridge University Press, 1992

[20] W. Guo and S. X.-D. Tan, “Circuit level alternating-direction-
implicit approach to transient analysis of power distribution net-
works,” Proc. 5th International Conference on ASIC, Oct.2003.
pp.246-249.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

