
Optimal Topology Exploration for Application-Specific 3D Architectures ∗

Ozcan Ozturk, Feng Wang, Mahmut Kandemir, and Yuan Xie
Computer Science and Engineering Department

Pennsylvania State University
e-mail: {ozturk,fenwang,kandemir,yuanxie}@cse.psu.edu

Abstract— As technology scales, increasing interconnect costs
make it necessary to consider alternate ways of building inte-
grated circuits. One promising option along this direction is 3D
architectures where a stack of multiple device layers, with direct
vertical tunneling through them, are put together on the same
chip. In this paper, we explore how processor cores and storage
blocks can be placed in a 3D architecture to minimize data access
costs under temperature constraints. This process is referred to as
the topology exploration. Using integer linear programming, we
compare the best 2D placement with the best 3D placement, and
show through experiments with both single-core and multi-core
systems that the 3D placement generates much better results (in
terms of data access costs) under the same temperature bounds.
We also discuss the tradeoffs between temperature constraint and
data access costs.

I. INTRODUCTION

As technology scales, the International Technology
Roadmap for Semiconductors projects that on-chip commu-
nications will require new design approaches to achieve sys-
tem level performance targets [15]. Three-dimensional in-
tegrated circuits (3D ICs) [6, 10, 11, 12] are attractive op-
tions for overcoming the barriers in interconnect scaling, offer-
ing an opportunity to continue the CMOS performance trend.
In a three-dimensional (3D) chip, multiple device layers are
stacked together with direct vertical interconnects tunneling
through them. Consequently, one of the most important ben-
efits of a 3D chip over a traditional two-dimensional (2D) de-
sign is the reduction on global interconnect. Other benefits of
3D ICs include: (i) higher packing density and smaller foot-
print due to the addition of a third dimension to the conven-
tional two-dimensional layout; (ii) higher performance due to
reduced average interconnect length; (iii) lower interconnect
power consumption due to the reduction in total wiring length;
and (iv) support for realization of mixed-technology chips.

As heat is generated by the power dissipated on the chip,
the on-chip junction temperatures also increase, resulting in
higher cooling/packaging costs, acceleration of failure mecha-
nisms, and degradation of performance. For 3D ICs, the ther-
mal issues are even more pronounced than the 2D designs due
to higher packing density, especially for the inner layer of the
die. It is often considered as a major hindrance for 3D inte-
gration [6]. For example, temperature increases force the de-
sign to slow down to cool the chip, such that the actual per-
formance benefits from reducing global interconnect could be

∗This work is supported in part by NSF Career Award #0093082 and by a
grant from GSRC.

offset. Therefore, thermal-aware design is very critical to ex-
tract the maximum benefits from the 3D integration.

As technology moves towards 3D designs, one of the chal-
lenging problems in the context of multi-core systems is the
placement of processor cores and storage blocks across the
multiple layers available. This is a critical problem as both
power and performance behavior of a design are significantly
influenced by the data communication (data access) distances
between the processor cores and storage blocks. In particular,
if a computation block (e.g., a processor core) frequently ac-
cesses data from certain storage blocks, these storage blocks
should be placed into positions close (in vertical or horizon-
tal sense) to that processor core. Similarly, in a multi-core
design, if two cores frequently share certain data residing in
a given storage block, that storage block should be put close
to both these cores to minimize the data communication dis-
tances, thereby, improving potentially both performance and
power consumption.

The important point to note, however, is that each embed-
ded application can require a different placement of processor
cores and storage blocks for achieving the minimum data com-
munication distances. Therefore, in this paper, our focus is on
application-specific placement of processor cores and storage
blocks in a 3D design space. For this purpose, we propose an
integer linear programming (ILP) based processor core/storage
block placement for single-core and multi-core embedded de-
signs. This placement problem is also referred to as topology
exploration. While ILP based solutions are known to take large
solution times, this issue does not seem to be very pressing in
our case because (i) we design a customized placement for a
given embedded application, and thus, can afford large solu-
tion times as design quality is of utmost importance, and (ii)
since a given design typically has only a small number of pro-
cessor cores and storage blocks, the solution times can be kept
under control.

We implemented our ILP based solution within a commer-
cial solver [23], and performed experiments with different
types of applications. The first group of applications are a set
of six sequential Spec2000 codes and used for single-core de-
signs in this work. The second group of applications, on the
other hand, are for multi-core designs and include four array-
based codes parallelized through an optimizing compiler. Our
experiments that consider a set of cache lines as a storage block
reveal two important results: (i) the best 3D designs signif-
icantly outperform the best 2D designs (also obtained using
ILP) for a given application under the same temperature con-
straint for both single-core and multi-core applications, and

(ii) optimized placement of blocks is very important in the 3D
domain as the difference between the optimized and random
core/storage block placements (in 3D) is very significant in all
the cases tested.

The rest of this paper is organized as follows. The next sec-
tion discusses the related work on 3D and customized memory
design. Section III explains the thermal model used in this
work. Section IV presents the details of our ILP formulation,
and Section V shows the working of our approach through
an example. Section VI gives an experimental evaluation of
our approach. Finally, Section VII presents our concluding re-
marks.

II. RELATED WORK

We discuss the related efforts in two categories: 3D design
and customized memory design for embedded systems. De-
sign techniques and methodologies for 3D architectures have
been investigated to efficiently exploit the benefits of 3D tech-
nologies. Recent efforts have focused on developing tools for
supporting custom 3D layouts and placement tools [11]. In
Deng et al [12], the technology and testing issues are surveyed
and a 3D integration framework is presented. However, the
investigation of the benefits of 3D design at the architectural
level is still in its infancy. Das et al [10] study the energy
and thermal behavior of 3D designs under a supplied time con-
straint, and their tool is based on a standard-cell circuit layout.
A recent paper provides an overview of the potential benefits
of designing an Itanium processor in the 3D technology [6].
However, it does not provide details of the design of the indi-
vidual components. Several recent efforts also study employ-
ment of 3D designs in reconfigurable fabrics [1, 3]. Our work
is different from all these prior efforts as we are interested in
application-specific placement of processor cores and storage
blocks in 3D.

Memory system design and optimization has been a popular
area of research. The prior work mostly focus on single pro-
cessor based systems [5, 8, 9, 18, 19, 20]. An embedded sys-
tem consisting of a VLIW processor, instruction cache, data
cache, and second-level unified cache has been investigated by
Abraham and Mahlke [2]. A hierarchical approach has been
used to partition the system into components. Meftali et al
[16] attack the memory space allocation (partitioning) prob-
lem. In their work, an integer linear programming model has
been applied to obtain an optimal distributed shared memory
architecture. The objective is to minimize the global cost to ac-
cess the shared data in the application and the memory cost. A
packet routing switch example has been used to test the effec-
tiveness of the proposed approach. Embedded memory design
for application-specific multi-core system-on-chips has been
investigated by Gharsalli et al [13]. In this methodology, they
try to integrate the standard memory components. Our work
is different from these prior efforts discussed above since we
focus on a 3D architecture and study optimal block placement
under temperature constraints.

III. 3D THERMAL MODEL

In order to facilitate the thermal-aware processor
core/storage block placement process, a compact thermal

Ri,j,k

Heat sink

Heat spreader

4 stacking
device layers

Processor core or
Storage block3D Circuit

Thermal Resistance

Fig. 1. 3D resistor mesh model.

model is needed to provide the temperature profile. Numer-
ical computing methods (such as finite difference method
(FDM) [22]) are very accurate but computationally intensive,
while the simplified close-form formula [14] is very fast but
inaccurate. Skadron et al proposed a thermal model called
Hotspot [21], which is based on lumped thermal resistances
and thermal capacitances. It is more efficient than the prior
low-level approaches since the variances at temperature are
tracked at a granularity of functional block level. In our
research, we use a simplified analytical model called the 3D
resistor mesh (shown in Figure 1), which is similar to the
approach taken by Hotspot, to facilitate the thermal analysis.
The model employs the principle of thermal-electrical duality
to enable efficient computation of the thermal effects at the
block level. The transfer thermal resistance Ri,j of block i
with respect to block j can be defined as the temperature rise
at the block i due to one unit of power dissipated at block j:

Ri,j =
∆Ti,j

∆Pi,j
.

In this simplified model, the device layers are stacked together
with the heat sink as the bottom layer, and each device layer
consists of the blocks, which are the storage (cache memory)
blocks or the processor core(s). These blocks define the ther-
mal nodes of the thermal resistor mesh. (For more details, the
reader is referred to [21].) A 3D resistor mesh consists of ver-
tical and lateral thermal resistors, which model the heat flow
from wafer to wafer, wafer to heatsink, and heat transferring
between the blocks. These vertical and lateral resistances are
calculated based on Hotspot [21].

After the 3D thermal resistance network has been deter-
mined, the temperature rise at each block can be estimated by
solving the following equation:

T = R × P,

where T is the temperature of each block, R is a matrix of
thermal resistances, and P is the power consumption of each
block. One of the nice properties of this high-level abstrac-
tion of temperature behavior is that it can easily be embedded
within an ILP-based opimization framework (since it is linear),
as will be discussed in the next section.

IV. ILP FORMULATION

Our goal in this section is to present an ILP formulation of
the problem of minimizing data communication cost of a given

TABLE I
THE CONSTANT TERMS USED IN OUR ILP FORMULATION. THESE ARE

EITHER ARCHITECTURE SPECIFIC OR PROGRAM SPECIFIC. NOTE THAT

CZ CAPTURES THE NUMBER OF LAYERS IN THE 3D DESIGN. BY SETTING

CZ TO 1, WE CAN MODEL A CONVENTIONAL 2D (SINGLE LAYER)
DESIGN AS WELL. THE VALUES OF FREQp,m ARE OBTAINED BY

COLLECTING STATISTICS THROUGH SIMULATING THE CODE AND

CAPTURING ACCESSES TO EACH STORAGE BLOCK.

Constant Definition

P Number of processor cores
M Number of storage blocks

CX , CY , CZ Dimensions of the chip
PX , PY Dimensions of a processor core
SIZEm Size of a storage block m

FREQp,m Number of accesses to storage block m by processor p
Rl,v Thermal resistance network
TB Temperature bound

application by determining the optimal placement of storage
blocks and processor cores under a given temperature bound.
A storage block in this paper corresponds to a set of consecu-
tive cache lines. The data cache is assumed to be divided into
storage blocks of equal size. In this paper, our focus is on the
data cache only; however, the proposed approach can be ap-
plied to the instruction cache as well.

ILP provides a set of techniques that solve those optimiza-
tion problems in which both the objective function and con-
straints are linear functions and the solution variables are re-
stricted to be integers. The 0-1 ILP is an ILP problem in which
each (solution) variable is restricted to be either 0 or 1 [17].
Table I gives the constant terms used in our ILP formulation.
We used Xpress-MP [23], a commercial tool, to formulate and
solve our ILP problem, though its choice is orthogonal to the
focus of this paper. In our ILP formulation, we view the chip
area as a 3D grid, and assign storage blocks and cores into this
grid.

Assuming that P denotes the total number of processor
cores, M the total number of storage blocks, (CX , CY , CZ)
the dimensions of the chip, (PX , PY) the dimensions of the
processor core, our approach uses 0-1 variables to specify the
coordinates of each storage block and processor core.

We use PC to identify the coordinates of a processor core.
More specifically,
• PCp,x,y,z : indicates whether processor core p is in

(x, y, z).
Similarly, MC is used in our formulation to identify the co-

ordinates of a storage block.
• MCm,x,y,z : indicates whether storage block m is in

(x, y, z).
Although the size of a storage block is given, its dimensions

may vary. We use MD to capture the dimensions of a storage
block. Specifically, we have:
• MDm,x,y : indicates whether storage block m has dimen-

sions of (x, y).
The mapping between the coordinates and the blocks is en-

sured by variable MMap for the storage blocks, and variable
PMap for the processor cores. That is,
• MMapx,y,z,m : indicates whether coordinate (x,y,z) is

assigned to storage block m.
• PMapx,y,z,p : indicates whether coordinate (x,y,z) is as-

signed to processor core p.
The distances between a processor core and a storage

block on each axis (x,y and z) are captured by Xdistp,m,x,
Y distp,m,y, and Zdistp,m,z . Specifically, we have:
• Xdistp,m,x : indicates whether the distance between pro-

cessor core p and storage block m is equal to x on the x-axis.
• Y distp,m,y : indicates whether the distance between pro-

cessor core p and storage block m is equal to y on the y-axis.
• Zdistp,m,z : indicates whether the distance between pro-

cessor core p and storage block m is equal to z on the z-axis.
In order to facilitate the thermal-aware core/storage block

placement, power and temperature values need to be calcu-
lated. Temperature of each block (Ti) is obtained using the
resistance vector (R) and the corresponding power consump-
tion values (obtained through a Wattch-based simulation [7]).
• Powerm : is the power consumption for block m.
• Tempm : is the temperature of block m. A processor core

needs to be assigned to a single coordinate:

CX−1∑

i=0

CY −1∑

j=0

CZ−1∑

k=0

PCp,i,j,k = 1, ∀p. (1)

In the above equation, i, j and k correspond to the x, y and
z coordinates, respectively. A storage block also needs to be
assigned to a unique coordinate:

CX−1∑

i=0

CY −1∑

j=0

CZ−1∑

k=0

MCm,i,j,k = 1, ∀m. (2)

A storage block needs to have unique dimensions:

CX∑

i=1

CY∑

j=1

MDm,i,j = 1, ∀m. (3)

Each storage block should have dimensions in such a way that
its size, SIZEm (given as input), will fit into the allocated
space. That is, SIZEm = width × height:

SIZEm =
CX∑

i=1

CY∑

j=1

MDm,i,j × i × j, ∀m. (4)

Storage blocks should be mapped to the chip based on the co-
ordinate and dimensions of the corresponding storage block.
This requirement can be captured as follows:

MMapx,y,z,m ≥ MCm,x1,y1,z−1 + MDm,dx,dy − 1,

∀m, x, x1, dx, y, y1, dy, z, z1, dz such that

x1 + dx ≥ x > x1, and y1 + dy ≥ y > y1. (5)

In this expression, x1, y1 and z1 denotes the x, y, and z coor-
dinates of a storage block. Similarly, dx and dy denote the di-
mensions of the storage block. Based on these values, MMap
assigns the corresponding coordinates to the storage block m.
Similarly, processor cores should be mapped to the chip, which
can be expressed as follows:

PMapx,y,z,p ≥ PCp,x1,y1,z−1, ∀p, x, x1, y, y1, z, z1

such that x1 + PX ≥ x > x1, and y1 + PY ≥ y > y1. (6)

In order to prevent multiple mappings of a coordinate in our
grid, we force a coordinate to belong a single processor core or

TABLE II
THE ACCESS PERCENTAGE OF EACH BLOCK BY DIFFERENT PROCESSORS.

Processor B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

1 0.20% 0.18% 61.76% 0.19% 0.17% 0.20% 3.48% 2.86% 0.20% 0.20%
2 0.20% 0.19% 61.86% 0.19% 0.22% 4.07% 2.30% 0.18% 0.19% 0.18%
3 0.18% 0.18% 61.83% 0.18% 0.18% 4.05% 2.34% 0.19% 0.21% 0.19%
4 0.18% 0.22% 61.76% 0.19% 0.18% 4.05% 2.32% 0.18% 0.20% 0.18%

Processor B11 B12 B13 B14 B15 B16 B17 B18 B19 B20

1 22.83% 0.22% 0.20% 0.18% 0.20% 0.19% 0.18% 0.19% 1.83% 4.55%
2 22.64% 0.20% 0.18% 0.18% 0.17% 0.19% 0.18% 1.91% 4.49% 0.28%
3 22.65% 0.20% 0.20% 0.22% 0.19% 0.20% 0.18% 1.89% 4.47% 0.29%
4 22.59% 0.17% 0.18% 0.18% 0.19% 0.21% 0.18% 1.89% 4.49% 0.31%

a single storage block:

M∑

i=1

MMapi,x,y,z +
P∑

i=1

PMapi,x,y,z = 1, ∀x, y, z. (7)

Manhattan Distance is assumed to be the cost of the data com-
munication between a storage block and a processor core. This
is also referred to as the data access cost in this paper, and is
the metric whose value we want to minimize. Note that in our
architecture processor cores communicate by sharing data in
storage blocks. To capture the Manhattan Distance, we use
two variables, namely, Xdistp,m,x and Y distp,m,y , and em-
ploy the following constraints:

Xdistp,m,x ≥ PCp,x1,y1,z1 + MCm,x2,y2,z2 − 1,

∀p, m, x, x1, x2, y1, y2, z1, z2 such that x = |x1 − x2|. (8)

Y distp,m,y ≥ PCp,x1,y1,z1 + MCm,x2,y2,z2 − 1,

∀p, m, x1, x2, y, y1, y2, z1, z2 such that y = |y1 − y2|. (9)

In addition to the x and y dimensions, there is a communication
cost due to z dimension, which captures the vertical dimension.
Data communication across the layers is not the same as the
communication within a given layer, because it only depends
on the wafer thickness, which does not change with the block
size, so it needs to be captured separately as follows:

Zdistp,m,z ≥ PCp,x1,y1,z1 + MCm,x2,y2,z2 − 1,

∀p, m, x1, x2, y1, y2, z, z1, z2 such that z = |z1 − z2|. (10)

In wafer-bonding 3D technology, the dimensions of the ver-
tical through-wafer interconnect are not expected to scale at
the same rate as feature size, because wafer-to-wafer align-
ment tolerances during bonding pose limitations on the scal-
ing of the through-wafer interconect. Current dimensions of
through-wafer via sizes vary from 1µm-by-1µm to 10µm-by-
10µm [6, 11, 12]. The relatively large size of via makes the
interconnect delay going through wafer to be relatively much
smaller.

We next calculate the temperature of each block using the
Temp = R × Power equation. More specifically,

Tempm =
P+M+1∑

j=1

Rm,j × Powerj , ∀m. (11)

Finally, the temperature constraint is enforced using the fol-
lowing expression:

Tempm ≤ TB, ∀m. (12)

TABLE III
SINGLE-CORE BENCHMARK CODES USED IN THIS STUDY.

Benchmark Source Description Number of
Name Data Accesses

ammp Spec Computational Chemistry 86967895
equake Spec Seismic Wave Propagation Simulation 83758249

mcf Spec Combinatorial Optimization 114662229
mesa Spec 3-D Graphics Library 134791940

vortex Spec Object-oriented Database 163495955
vpr Spec FPGA Circuit Placement and Routing 117239027

TABLE IV
MULTI-CORE BENCHMARK CODES USED IN THIS STUDY.

Benchmark Source Description Number of
Name Data Accesses

3step-log DSPstone Motion Estimation 90646252
adi Livermore Alternate Direction Integration 71021085

btrix Spec Block Tridiagonal Matrix Solution 50055611
tsf Perfect Club Nearest Neighbor Computation 54917732

Having specified the necessary constraints in our ILP formula-
tion, we next give our objective function. We define our cost
function as the sum of the data communication distances in all
3 dimensions. XCost, YCost, and ZCost denote the total data
communication distances traversed along dimensions x,y, and
z, respectively. The communication cost due to dimension x
is:

XCost =
P∑

i=1

M∑

j=1

CX−1∑

k=1

FREQi,j × Xdisti,j,k × k. (13)

Similarly, the cost due to dimension y can be expressed as:

YCost =
P∑

i=1

M∑

j=1

CY −1∑

k=1

FREQi,j × Y disti,j,k × k. (14)

Finally, the cost due to dimension z can be written as:

ZCost =
P∑

i=1

M∑

j=1

CZ−1∑

k=1

FREQi,j × Zdisti,j,k × k. (15)

Consequently, our objective function can be expressed as:

min (α × (XCost + YCost) + β × ZCost). (16)

To summarize, our topology exploration problem can be for-
mulated as “minimize α × (XCost + YCost) + β × ZCost

under constraints (1) through (15).” It is important to note that
this ILP formulation is very flexible as it can accomodate dif-
ferent number of processor cores, storage blocks, and layers.

V. EXAMPLE

In this section, we give an example demonstrating the effec-
tiveness of our approach. As our example, we use 3step-log,

Processor Core

Storage Block

P1

P3

P2

P4

B15 B1 B12 B10B20 B17

B4 B7 B11 B8

B3

B13

B2 B19 B6 B16

B18

B5

B9 B14

(a)

P4 P3

P1

P2

Layer 2

Layer 1
B4 B9 B20B6

B16 B7 B10B13

B11 B18 B14B5

B2 B17

B19

B3

B1 B8

B12

B15

B14 P3

P2

P1

P4

Layer 2

Layer 1

B18 B10

B5

B12B7

B3B16

B8

B13 B9 B17

B4
B1B20

B2

B15

B19

B11

B6

(b) (c)

Fig. 2. The topologies generated with 4 processor cores (3step-log). (a)
Optimal 2D. (b) Random 3D. (c) Optimal 3D. P1. . . P4 are processor cores
and B1. . . B20 are storage blocks.

one of our benchmarks, with 4 processor cores and 20 stor-
age blocks. In the 2D case, we assume the dimensions of the
chip (CX , CY and CZ) as 12 × 8 × 1, and in the 3D case,
we assume the dimensions to be 8 × 6 × 2. In both the cases,
the total number of coordinates (total chip area) is equal to 96.
Both the storage blocks and the processor cores are assumed
to be 2 × 2, though they can be set to any value in our formu-
lation. Table II shows the percentage of accesses to each block
by different processor cores.

In Figure 2, the topologies generated by three different
schemes are depicted. Figure 2(a) illustrates the best 2D place-
ment (determined using ILP). On the other hand, a randomly-
generated storage block/processor core placement is shown in
Figure 2(b) for 3D. Finally, Figure 2(c) shows the best place-
ment for 3D (determined using ILP). Note that, each processor
core and each storage block is mapped to 4 coordinates since
the size of a storage block/processor core is assumed to be 4.
To explain these mappings, let us consider Figure 2(c). In this
topology, B15 is mapped to coordinates (0,0,0), (0,1,0), (1,0,0),
and (1,1,0). As it can be seen from Table II, data block B3 is
the most frequently accessed block by all the processor cores,
and that is why it is put into a very close position to all 4 pro-
cessor cores in optimal 2D and optimal 3D. We also see that,
B11 is the next most frequently accessed block by all the pro-
cessor cores in this example.

VI. EXPERIMENTAL EVALUATION

A. Setup

We performed several experiments with two different set
of benchmarks. The first group of applications are sequential
Spec2000 codes and used for single-core designs in this work.
This benchmark set consists of six applications randomly-
selected from the Spec2000 benchmark suite. Table III lists
these codes and their important characteristics. In collecting
the statistics on accesses to storage blocks, for each bench-
mark, we fast-forwarded the first 2 billion instructions, and
simulated the next 300 million instructions. The fourth col-
umn of Table III gives the number of data accesses for each
application. The second group of applications, on the other
hand, are for multi-core designs and include several array-
based codes parallelized through an optimizing compiler built
upon SUIF [4]. The exact mechanism used in parallelizing the
code is orthogonal to the focus of this paper. What we mean

by parallelization in this context is distributing loop iterations
across the processors; each processor is typically assigned a
subset of loop iterations. Table IV lists the important charac-
teristics of this second group of benchmarks. As before, the
third column gives the description of the benchmarks, and the
last column gives the number of data accesses. The ILP solu-
tion times on an Intel Pentium III Xeon Processor of 549MHz
with 1GB of RAM varied between 144 seconds and 3.5 hours,
averaging on about 25 minutes. The default simulation param-
eters used in our experiments are presented in Figure 3. As
our base configuration, we assumed a stack of two device lay-
ers connected to each other. We also assumed that the chip is
composed of 24 blocks, each of which can be a storage block
or a processor core. We conservatively assumed that the block-
to-block distance is ten times costlier than that of the layer-to-
layer distance. This is denoted as the ratio of α

β in this paper.
We performed experiments with four different execution

models for each benchmark code in our experimental suite:
• 2D-Random: This is in a sense a conventional topology

which uses a single wafer and the storage blocks and the pro-
cessor cores are placed randomly.
• 2D-Opt: This is an integer linear programming based strat-

egy, wherein the storage blocks and processor cores are dis-
tributed on the die in a way that minimizes the data communi-
cation cost of the whole system. Note that, this is an optimal
core/storage block placement scheme for 2D.
• 3D-Random: This is same as the 2D-Random case except

that there are possibly multiple device layers.
• 3D-Opt: This is the integer linear programming based

placement strategy for 3D proposed in this paper, wherein the
storage blocks and processor cores are placed on several wafers
optimally. This scheme represents the optimal placement for
3D.

B. Results
Figure 4 gives our results based on two layers. Note that,

these results are obtained using the values given in Figure 3.
All results are normalized with respect to those of the 2D-
Random scheme. Figure 4(a) shows the improvement brought
by our approach for the single-core designs, whereas Fig-
ure 4(b) gives the similar results for the multi-core designs.
We see that the overall average reduction in data access costs
with 2D-Opt is around 63% and 58% for the single-core case
and the multi-core case, respectively. On the other hand, the
3D-Opt scheme reduces the costs by about 82% and 69% on
average for the single-core case and the multi-core case, re-
spectively. In other words, the best 3D design generates much
better results than the best 2D design.

To see the impact of the optimal placement of processor
cores/storage blocks, we next compare the optimized and ran-
dom designs in 3D. In Figure 5, we compare our 3D approach
against the randomly-generated placements obtained through
3D-Random. As before, the results are normalized with re-
spect to the 2D-Random scheme. The average data commu-
nication cost reductions are 42% and 51% for the single-core
case and for the multi-core case, respectively. Overall, the re-
sults presented in Figure 4 and Figure 5 clearly show that em-
ploying a 3D design with optimal placement is critical for the
best results.

Parameter Value

Number of processor cores 4
(in multi-core designs)
Number of blocks 24
Number of layers 2
α
β 10
Total storage capacity 128KB
Set associativity 2 way
Line size 32 Bytes
Number of lines per block 90
Temperature bound 110°C

Fig. 3. The default simulation parameters.

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%

ammp equake mcf mesa vortex vprN
o

rm
al

iz
ed

 D
at

a
C

o
m

m
u

n
ic

at
io

n
 C

o
st

2D-Opt 3D-Opt

(a)

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%

3step-log adi btrix tsfN
o

rm
al

iz
ed

 D
at

a
C

o
m

m
u

n
ic

at
io

n
 C

o
st

2D-Opt 3D-Opt

(b)

Fig. 4. Data communication costs for 2D-Opt and
3D-Opt normalized with respect to the 2D-Random
scheme. (a) Single-core design. (b) Multi-core design
(with 4 processor cores).

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

ammp equake mcf mesa vortex vprN
o

rm
al

iz
ed

 D
at

a
C

o
m

m
u

n
ic

at
io

n
 C

o
st

3D-Random 3D-Opt

(a)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

3step-log adi btrix tsfN
o

rm
al

iz
ed

 D
at

a
C

o
m

m
u

n
ic

at
io

n
 C

o
st

3D-Random 3D-Opt

(b)

Fig. 5. Data communication costs for 3D-Random and
3D-Opt normalized with respect to the 2D-Random
scheme. (a) Single-core design. (b) Multi-core design
(with 4 processor cores). The results of 3D-Random are
obtained by taking the average over five different
experiments with random placement.

VII. CONCLUDING REMARKS

Ever-shrinking process technology coupled with increasing
data communication requirements of embedded applications
make on-chip interconnects an increasing bottleneck in em-
bedded system design. One of the promising solutions to
this global interconnect problem is to move towards 3D de-
signs, where direct verical tunneling allows multiple layers to
be stacked, one on top of the other. The work described in
this paper studies application-specific placement of processor
cores and storage blocks in a customized 3D design. We for-
mulated this problem using ILP and solved it using a com-
mercial solver. Our experiments with both the single-core and
multi-core designs and with both the 2D and 3D designs indi-
cate that the optimal placement of storage blocks and proces-
sor cores (i.e., optimal topology discovery) is very important
in a 3D design (i.e., it makes a huge difference in terms of data
communication costs) and that the best 3D designs consistently
generate better results than the best 2D designs.

REFERENCES

[1] C. Ababei, H. Mogal, and K. Bazargan, Three-dimensional Place and Route for
FPGAs, In Proc. of Asia South-Pacific Design Automation Conference (ASP-
DAC), 2005.

[2] S. G. Abraham and S. A. Mahlke, Automatic and Efficient Evaluation of Memory
Hierarchies for Embedded Systems, In Proc. of the 32nd Annual International
Symposium on Microarchitecture, Haifa, Israel, November 1999.

[3] A. J. Alexander, et al, Three-Dimensional Field-Programmable Gate Arrays, In
Proc. of The Eighth Annual IEEE International Application Specific Integrated
Circuits Conference, pp. 253-256, 1995.

[4] S. P. Amarasinghe, J. M. Anderson, M. S. Lam, and C. W. Tseng. The SUIF
compiler for scalable parallel machines, In Proc. SIAM Conference on Parallel
Processing for Scientific Computing, February, 1995.

[5] F. Angiolini, L. Benini, and A. Caprara, Polynomial-Time Algorithm for On-Chip
Scratch-Pad Memory Partitioning, In Proc. of the International Conference on
Compilers, Architectures and Synthesis for Embedded Systems, San Jose, CA,
2003.

[6] B. Black, et al, 3D Processing technology and Its Impact on IA32 Microproces-
sors, In Proc. of ICCD, 2004.

[7] D. Brooks, V. Tiwari, and M. Martonosi, Wattch: A framework for architectural-
level power analysis and optimizations, In Proc. of the 27th Annual International
Symposium on Computer Architecture, June 2000.

[8] Y. Cao, H. Tomiyama, T. Okuma, and H. Yasuura, Data Memory Design Consid-
ering Effective Bit-width for Low-Energy Embedded Systems, In Proc. of the 15th
International Symposium on System Synthesis, Kyoto, Japan, October 2002.

[9] F. Catthoor, et al, Custom Memory Management Methodology – Exploration of
Memory Organization for Embedded Multimedia System Design, Kluwer Aca-
demic Publishers, 1998.

[10] S. Das, Timing, energy, and Thermal performance of Three-Dimensional Inte-
grated Circuits, In Proc. of GLSVLSI, 2004.

[11] S. Das, et al, Technology, Performance, and computer-aided Design of Three-
Dimensional integrated Circuits, In Proc. of ISPD, 2004.

[12] Y. Deng, et al, 2.5D System Integration: A Design Driven System Implementation
Schema, In Proc. of ASP-DAC, 2004.

[13] F. Gharsalli, S. Meftali, F. Rousseau, and A. A. Jerraya, Automatic Generation of
Embedded Memory Wrapper for Multiprocessor SoC, In Proc. of the 39th Design
Automation Conference, New Orleans, Louisiana, 1999.

[14] S. Im and K. Banerjee, Full Chip Thermal Analysis of Planar (2D) and Vertically
Integrated (3D) High Performance ICs, Tech. Digest IEDM 2000, pp.727-730.

[15] International Technology Roadmap for Semiconductors,
http://www.itrs.net/Common/2004Update/2004Update.htm.

[16] S. Meftali, F. Gharsalli, F. Rousseau, and A. A. Jerraya. An Optimal Memory
Allocation for Application-Specific Multiprocessor System-on-Chip, In Proc. of
the International Symposium on Systems Synthesis, Montreal, Canada, 2001.

[17] G. Nemhauser, L. Wolsey. Integer and Combinatorial Optimization, Wiley-
Interscience Publications, 1988.

[18] P. R. Panda and L. Chitturi, An Energy-Conscious Algorithm for Memory Port Al-
location, In Proc. of the 2002 IEEE/ACM International Conference on Computer-
Aided Design, San Jose, California, November 2002.

[19] A. Ramachandran and M. F. Jacome, Xtream-Fit: An Energy-Delay Efficient Data
Memory Subsystem for Embedded Media Processing, In Proc. of the 40th Design
Automation Conference, Anaheim, CA, June 2003.

[20] W.-T. Shiue and C. Chakrabarti, Memory Exploration for Low-Power Embedded
Systems, In Proc. of the 36th Design Automation Conferences, New Orleans, LA,
1999.

[21] K. Skadron, et al, HotSpot Thermal Modeling Simulator,
http://lava.cs.virginia.edu/HotSpot/

[22] C. Tsai and S. Kang, Cell-Level Placement for Improving Substrate Thermal Dis-
tribution, IEEE Transactions On Computer-Aided Design of Integrated Circuits
and Systems, vol. 19, pp. 253-266, Feb. 2000.

[23] Xpress-MP, http://www.dashoptimization.com/pdf/Mosel1.pdf, 2002.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

