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Abstract – We propose an interconnect diagnosis scheme based 
on Oscillation Ring test methodology for SOC design with 
heterogeneous cores. The target fault models are delay faults 
and crosstalk glitches. We analyze the diagnosability of an 
interconnect structure and propose a fast diagnosability 
checking algorithm and an efficient diagnosis ring generation 
algorithm which achieves the optimal diagnosability. Two 
optimization techniques improve the efficiency and effectiveness 
of interconnect diagnosis. In all experiments, our method 
achieves 100% fault coverage and the optimal diagnosis 
resolution. 

I. Introduction 
Interconnect delays, rather than gate delays, dominate overall 

circuit performance in the nanometer era [1-2], especially for 
System-on-chip (SOC) ICs. Interconnect diagnosis, including the 
detection and location of faulty nets, plays a key role in enhancing 
circuit reliability and yield.  It is not easy to directly apply those 
existing interconnect diagnosis techniques to SOC designs, and the 
diagnosis costs greatly increase for manufacturing and yield 
enhancement. Therefore, it is desired to develop an effective test 
scheme to reduce the costs of interconnect diagnosis. Interconnect 
diagnosis for various applications, such as printed circuit board 
(PCB) and multi-chip module (MCM) has been studied extensively 
in the literature [3-8]. However, their target fault models are mainly 
traditional stuck-at and bridging faults. The diagnosis algorithms 
include counting sequence, walking-0 and walking-1 sequence, 
maximal independent test set, and focus mainly on special 
interconnect structures, especially for bus-oriented or FPGA designs. 
On the other hand, in this paper we consider delay and crosstalk 
glitch faults, which are important in nanotechnology.  

Oscillation ring based test is an efficient and effective method to 
detect faults in a circuit or a device [9-10]. An oscillation ring is a 
closed loop with an odd number of signal inversions. Once the ring 
is constructed, oscillation signal appears on the ring. For a circuit 
with faults, some rings will not oscillate correctly. Once a set of 
oscillation tests have been conducted, we can locate some or all of 
the faults according to the test outcome [11]. Whether each fault can 
be correctly identified, or diagnosed, depends on the interconnect 
structure and the test rings applied.

The advantage of oscillation ring based diagnosis for the 
interconnect structure is that, in addition to functional faults like 
stuck-at and open faults, it is also capable of identifying delay faults 
and crosstalk glitch faults, the main sources for the loss of signal 
integrity [2]. Therefore, the oscillation ring based technique is an 
ideal approach to interconnect diagnosis. 

In this paper, we propose an oscillation ring based scheme to 
diagnose interconnect faults to reduce the test time for SOC 
interconnect diagnosis. This approach is compatible with the P1500 
standard [12], providing structural support for core testing as well as 

interconnect testing in SOC. We analyze the diagnosability of an 
interconnect structure and propose a fast diagnosability checking 
algorithm and an efficient ring generation algorithm. We prove that 
the generation algorithm can find the optimal diagnosability for any 
interconnect structure. The predetermined diagnosis method 
achieves the optimal diagnosability (i.e. the maximum diagnosis 
resolution). We also propose two optimization techniques for test 
time reduction with no hardware overhead. The first one is an 
adaptive diagnosis method, which reduces test time by 1.54X-2.67X. 
The other is a concurrent diagnosis method, which improves test 
effectiveness by up to 9.66%. Experiments on the MCNC 
benchmark circuits show our methods achieve 100% fault coverage 
and the optimal diagnosis resolution. (Here, the diagnosis resolution 
is defined as the cardinality of the largest set of indistinguishable 
faults, and the maximum diagnosis resolution or the optimal 
diagnosability implies that the cardinality is 1.) 

The proposed approach provides many advantages. First, it is 
applicable to arbitrary global interconnect. In contrast, previous 
diagnosis methods are more concentrated on special structures. 
Second, our approach can deal with faults that cause signal integrity 
problems, while it is difficult to handle such faults under traditional 
methods. We provide ring generation algorithms that achieve 100% 
fault coverage and the optimal diagnosis resolution for the modeled 
faults. A fast diagnosability checking methodoloty is given in this 
paper, which greatly reduce the execution time.

II. Oscillation Ring Test Scheme for Interconnect 
Detection and Diagnosis

A.  The OR Test Architecture

We discuss the interconnect oscillation ring test (IORT for short) 
for SOC interconnects [11]. Figure 1 illustrates a counter-based test 
architecture for both delay and crosstalk glitch detection for SOC 
ICs with the compatible IEEE P1500 core test standard. In P1500, 
each input/output pin of a core is attached with a wrapper cell, and a 
centralized test access mechanism (TAM) is provided to coordinate 
all test processes. In addition to the normal input/output connections, 
all wrapper cells in a core can also be connected with a shift register, 
usually referred to as a scan path, to facilitate test access. A 
modified wrapper cell design has been proposed to provide extra 
connections and inversion control so that the oscillation rings can be 
constructed through the wires and the boundary scan paths in cores 
[11]. For example, the oscillation ring test architecture in Figure 1 
consists of one oscillation ring and two neighboring nets. 

The target fault models of this test architecture are stuck-at, open, 
delay and crosstalk glitch faults. In addition to fault detection, 
measuring the delay fault can also be achieved. If an oscillation ring 
fails to oscillate, there exists stuck-at or open fault(s) in the 
components of the oscillation ring. The period of the oscillation 
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Figure 1. Test architecture for delay and crosstalk detection. 

signal is measured by using a delay counter in a core to test 
delay faults, and a similar scheme is also applied for crosstalk 
glitch detection.

A local counter is included in each core, and a central counter is 
in the TAM of an SOC. The central counter in the TAM is enabled 
by the signal OscTest, and triggered by the system clock. A local 
counter is connected to one wrapper cell in each core; however, it 
can be accessed by every wrapper cell through the wrapper cell 
chain. When an oscillation ring passes a core, an internal scan path 
is formed to connect the oscillation signal to the local counter. For 
example, core C1 is passed by the oscillation ring in Figure 1. The 
oscillation signal is fed to the local counter through a series of 
modified wrapper cells. When an oscillation test session starts 
(OscTest = 1), the TAM enables its own central counter as well as 
all local counters in cores. After the central counter in the TAM 
counts to a specific number n, the oscillation test session terminates 
and all local counters are disabled (OscTest = 0). Then all the local 
counter contents can then be scanned out to ATE for inspection. 

Assume that m oscillation rings are tested. Let the frequency of 
the system clock be f, and the delay counter contents of the rings be 
n1, n2, …, nm, respectively.  An estimation of the i-th ring’s 
oscillation frequency fi can be approximated by  

fi = f  ni / n    (1)

Since the frequency of each ring is predetermined during the 
design phase, a delay fault is detected and measured by inspecting 
the contents of the delay counters. Let the oscillation frequency of 
the rings, according to the timing specification, be fmin  fi fmax,
with the unit of measuring T0 (= n/f). Thus, we have nmin  ni nmax,
where nmin= fmin T0 and nmax= fmax T0. Let  be the resolution of 
delay measurement, and  be the maximum measurement error. 
Since a counter’s maximum measurement error is 1, the 
requirement for  should be the reciprocal of fmin and T0.

0min

1
Tf

    (2) 

Let the frequency specification of the oscillation rings be 4 MHz 
to 400 MHz and  be 0.001, implying the counter content nmin is at 
least 1000. From (2), we have the required T0 to be 250 s. This 
example illustrates the feasibility of the oscillation test scheme from 
a measurement prospect, and this frequency specification is actually 
compliant with ATE specifications. 

B. P1500 Wrapper Cell Design 

An oscillation ring consists of interconnect wires and part of the 
scan path in each core where the ring passes. Thus, a P1500 wrapper 
cell must provide necessary paths between input/output ports and 
scan in/scan out ports. If an oscillation test is used to test wires 
connected to pads, the boundary scan cells also have to be modified 
in a similar way. In order to facilitate the scheme, the P1500 
boundary wrapper cells need to be modified.  

A normal wrapper cell provides two types of paths: a scan path 
connecting all wrapper cells into a shift register, and an interface 
buffering between internal core and the wire connected to the pin. 
Whenever an oscillation test is applied, a third combination path 
must be provided. For an input pin, the wrapper cell must connect 
the pin input (IN) to the scan output (SO); while for an output pin, it 
should connect scan in (SI) to pin output (OUT) during an 
oscillation test session. 

The modified wrapper cell designs are shown in Figure 2. In each 
cell, two MUXs are added for path selection. For an input wrapper 
cell, the extra paths are SI SO and IN SO; while for an output 
cell, the extra paths are SI SO and SI OUT. The added inverting 
and non-inverting buffers are used to generate oscillation signals for 
the OR test; however, in an input wrapper cell, only one type of 
buffer is provided due to the limited control signals. Two control 
signals are needed in each modified wrapper: signal OscTest is a 
global control signal; while the signal sel is only used in the input 
wrapper cell, and the signal inv is only used in the output wrapper 
cell to ensure the odd parity of each ring. Signals sel and inv are set 
individually and scanned into the wrapper cells before an oscillation 
ring test session starts. 
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Figure 2. Modified wrapper cells with forced inversion; (a) input (b) 
output.

C. Interconnect Diagnosis for SOC 

A circuit consisting of three cores (C1, C2, and C3) and three nets 
(n1, n2, and n3) is shown in Figure 3. The first ring consists of nets 
n1 (and its right-hand side branch), n2, and n3, and it passes all three 
cores. The second ring consists of n1 (and its left-hand side branch) 
and n3, and scan paths in C1 and C3. The oscillation ring test scheme 
detects which line is faulty (n1, n2 or n3), and the oscillation ring 
diagnosis scheme diagnoses which segment is faulty (n11, n12, n13, n2

or n3).
In order to simplify the interconnect diagnosis problem, we 

model the SOC circuit in Figure 3 by a hypergraph, and model 
interconnects by a hypernet as shown in Figure 4. 
Definition 1: A hypergraph H = (V, L) consists of a vertex set V and 
an edge set L. A multi-terminal edge connects a set of vertices Vi

V, | Vi |  2, and it is referred to as a hypernet.
This hypergraph model is not good enough for diagnosis, since 

different parts of the same net (i.e. different net segments) affect 
different rings. Consider the 5-terminal hypernet with seven edge 
segments e1 to e7 as shown in Figure 4(a). If edge e1 is faulty, all 
four rings will not oscillate correctly. A faulty e2 affects rings 1 and 
2, a faulty e3 affects rings 3 and 4, and faults on edges e4, e5, e6 and 
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e7 affect rings 1, 2, 3, and 4, respectively. For diagnosis purpose, all 
these seven segments are different. 

C3 C2

C1

n1

n2

n3

Signal path 

Scan path 

C3 C2

C1

n11

n2

n3

Signal path

Scan path

n13

n12

 (a)    (b) 
Figure 3. An example of SOC interconnect (a) interconnect 
detection for each net (b) interconnect diagnosis for each net 
segment.

Definition 2: A directed graph G = (V, E) consists of a vertex set V
and an edge set E, and each edge in E is an ordered pair (u, v),
where u, v  V.
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Figure 4. (a) a hypernet, and (b) the graph model for diagnosis. 

III. Interconnect Diagnosability 
A.   Diagnosability Analysis 

Given a circuit consisting of n edges E = {e1, e2, …, en} and a set 
of m oscillation rings R = {r1, r2, …, rm}. Once a ring is constructed, 
the test outcome is either “pass” (P) or “fail” (F). When an edge ei is 
faulty, the test outcome of applying the m rings is said to be the 
syndrome of faulty ei.
Definition 3: A fault on edge ei and a fault on edge ej are 
distinguishable under the test set R if the syndrome of faulty ei and 
faulty ej are different. 
Definition 4: An edge is said to be single-fault diagnosable under 
the test set R if a faulty edge can be correctly identified, given that 
there is at most one fault in the interconnect structure.
Lemma 1: A fault on edge ei and a fault on edge ej are 
distinguishable under the test set R Ri Rj.
Proof:  The fact Ri Rj implies that there exists a ring r such that 
either (1) r Ri r Rj, or (2) r Rj r Ri. Thus, the syndromes of 
faulty ei and faulty ej are different. 

 When Ri = Rj, both faulty ei and faulty ej fail the same set of 
rings, and thus they have the same syndrome. 

Theorem 2: Edge ei is single-fault diagnosable Ri Rj for all 1 
j n and j  i.

The correctness of Theorem 2 follows the result of Lemma 1. It 
takes O(n2m) time to verify Theorem 2, since each pair of edges 
have to be compared. In order to reduce the complexity for 
diagnosability check, the following theorems can be used. 
Theorem 3: Edge ei is single-fault diagnosable if |Ei| = 1. 
Proof: Assume that edge ei is not single-fault diagnosable. From 
Theorem 2, there must exist an edge ej such that j i and Ri = Rj.
Therefore, both ei and ej belong to Ei and thus |Ei| > 1. 
Theorem 4: Let Ri’ be any non-empty subset of Ri for an edge ei,
and

'

'

iRri rE . Edge ei is single-fault diagnosable ek Ei’–

{ei}, ei and ek are distinguishable. 

Proof:  When at least one ring in Ri’ oscillates correctly, ei must 
be fault-free. On the other hand, when no rings in Ri’ oscillate 
correctly, at least one edge in Ei’ is faulty. Since all edges in Ei’–{ei}
are distinguishable from ei, we know whether ei is faulty. Therefore, 
ei is also single-fault diagnosable. 

 Assume that there is an ek Ei’–{ei} and ek is not distinguishable 
from ei. When every ring in Ri’ fails, it may be attributed to either ek

or ei. Thus, ei is not single-fault diagnosable.

Theorem 4 shows that not all rings in Ri are necessary to diagnose ei,
and a subset Ri’ is informative enough if and only if ei is 
distinguishable.
Corollary 5: Let Ri’ be any non-empty subset of Ri for an edge ei,
and

'

'

iRri rE . If for each ek Ei’–{ei}, ek is single-fault 

diagnosable, then edge ei is also single-fault diagnosable.
An example for the above definitions, theorems and corollaries is 

shown in Figure 5. Let the edge under consideration be ei, then Ri = 
{r1, r2, r3, r4}, and Ei = {ei, ej, ek}. Since Ri’ can be any non-empty 
subset of Ri, we may choose Ri’ = {r2, r3}, and thus Ei’ = {ei, ej, ek}.
It is not necessary to have both ej and ek diagnosable to make ei

diagnosable. For example, let faults on ej and ek be indistinguishable; 
if a fault on ei is distinguishable with {ej, ek}, then ei is diagnosable 
according to Theorem 4. 

Note that the above analysis applies to all types of faults except 
crosstalk glitches since they can be located directly from the test 
results of each ring.  

ej

r3r2r1

r5

ek

r4

ei

Figure 5. An interconnect diagnosis graph example. 

B.   Heuristic Diagnosability Check 

In order to accelerate the process of diagnosability analysis, we 
propose a diagnosability check heuristic. Consider two edges ei and 
ej. According to Lemma 1, faults on these two edges are 
distinguishable if |Ri|  |Rj|. Thus, as the first step, we sort and 
partition all edges according to the number of rings passing them 
(i.e., |Ri| for edge ei). For example, in Figure 5, ej and ek are in the 
same group as |Rj|=|Rk|=5, distinguishable from |Ri|=4.  

The second heuristic is to apply Theorem 3 first to check the 
diagnosability of an edge. Since the condition of Theorem 3, |Ei|=1, 
is only sufficient but not necessary to guarantee that ei be single-
fault diagnosable, it is still possible that ei is single-fault 
diagnosable when |Ei| 1. In this case, we need to compare Ri with Rj

for each ej in the same group as ei. To avoid the aforementioned 
problem, a third heuristic is used. The most likely reason for 
diagnosable ei with |Ei| 1 is that there exists an ej such that Rj Ri .
When the edge ej has been checked and removed from the check list 
before edge ei is processed, we shall not run into this problem by 
Corollary 5. The flowchart of the diagnosis checking heuristic is 
shown in Figure 6. 

Finally, when two faults are indistinguishable, they are put into 
the same equivalent class so as not to be compared twice. 

The interconnect diagnosis heuristic algorithm is illustrated as 
follows. Consider the graph shown in Figure 7. There are three rings 
in the figure: r1 = {e1, e4}, r2 = {e2, e5}, and r3 = {e1, e2, e3}.
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The diagnosis matrix representation for Figure 7 is illustrated in 
Figure 8(a), where each column represents an edge and each row 
represents a ring. A “1” is put in cell (i,j) if ring i passes edge j.
Note that the edges are sorted and partitioned into two groups that 
are separated by the broken line. The first group consists of edges e1

and e2, and each of them is passed by two rings (i.e., |R1|=|R2|=2).
The second group consists of three edges, and each of them is 
passed by one ring only (i.e., |R3|=|R4|=|R5|=1).

Figure 6. Flow chart of the heuristic for diagnosability checking.  

e1

e2

e3e4

e5

M1

M2 M3

Figure 7. An illustrative diagnosability example. 

The diagnosability checking process works as follows. First, 
apply Theorem 3 to edge e1. We see that it is passed by rings r1 and 
r3, and the intersection of these two rings is {e1} (i.e., |E1|=1). Thus, 
edge e1 is single-fault diagnosable. Similarly, edge e2 is also 
diagnosable as shown in Figure 8(b). 

Syndrome of e1 = {101} indicates that the test results of r1 and r3

are incorrect and r2 is correct when e1 is faulty; syndrome of e2 = 
{011} indicates that r2 and r3 are incorrect and r1 is correct when e2

is faulty. Since the diagnosability analysis starts with the group with 
the highest |Ri|, we start with group |Ri|=2, including e1 and e2 and 
then group |Ri|=1, consisting of edges e3, e4, and e5. Then, edges e1

and e2 are then marked and removed from the rings, as shown in 
Figure 8(b). There is only one edge remained in each ring, thus 
edges e3, e4 and e5 are single-fault diagnosable due to Corollary 5.  

e1
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1 1

1 1

1 1 1 

e2 e4e3 e5

(a)

e1

r1
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1   1 
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Figure 8. Matrices for the heuristic diagnosability checking. 

IV. Interconnect Diagnosis Algorithm 
In order to uniquely identify the faulty net segment, we need to 

ensure the optimal diagnosability or the maximum diagnosis 
resolution. The diagnosis resolution is defined as the largest number 
of nets with the same syndrome under a given set of test rings. Our 
goal is to diagnose every fault on every net segment, defined as the 
optimal diagnosability or the maximum diagnosis resolution. 

We propose a heuristic to find a small set of rings for single fault 
diagnosis. The algorithm is a modified depth-first search. The SOC 
under test is modeled as a hypergraph H. This graph is then 
transformed into graph G = (V, E) as outlined in Section 3.1. The 
vertex set V consists of cores and fanout points (intermediate nodes). 
The edge set E consists of edge segments partitioned from the 
original hypernets as explained in Figure 4(b). Our goal is to 
generate a predetermined set of rings to diagnose all edges in E.
Since we need to detect the interconnect structure before diagnosis, 
the set of fault-detection test rings Rt should be applied first. A 
heuristic to find Rt is outlined below in Figure 9.
Algorithm: IORT (Interconnect Oscillation Ring Generation for 
Fault Detection)

Input: A hypergraph H = (V, L) representing a circuit 

Output: A list of rings Rt

1. Transform hypergraph H into a new graph G = (V’, E) with 
equivalent 2-pin nets;

2. Rt; = ;
3. for every e = (u, v) E and e is not visited 
4.   Rt = Rt find_ring(G, e);
5. reverse-order simulation for rings in Rt.

function find_ring(G, e)
1. Let e = (u, v) and v is an input pin in core C;
2. if v is a pin in the starting core 
3.   return the ring and mark all nets as visited; 
4. for every output pin w in C
5. if there is an unvisited edge (w, x)
6.     find_ring(G, (w,x));
7. else if there is an untried output net (w, x)
8.     find_ring(G, (w,x));
9.   else  
10.     return ;
11. end function  

Figure 9. The ring generation for fault detection algorithm. 

For interconnect detection in the IORT scheme, in order to find 
Rt, we propose a heuristic algorithm to find a minimum set of rings 
that cover all 2-pin nets under test. We generate a ring containing a 
2-pin net (u, v) E by starting from vertex v, an input pin. Then we 
find an output pin w that locates in the same core as v, and w is 
connected to a 2-pin net that is not yet covered by any other ring. 
Each new ring may cover as many other uncovered nets as possible. 
After all rings having been generated, a simple reverse order 
simulation is conducted to remove redundant rings. A net is 
oscillation ring testable if there exists at least one ring containing 
this net. 

Our goal for the interconnect diagnosis in the IORD scheme is to 
find a small set of rings Rd that can uniquely identify the faulty edge
or net segment. The hypernet graph model for interconnect 
diagnosis (Rd) is the 2-pin net segment model shown in Figure 4(b), 
different from the 2-pin net model for interconnect detection (Rt).
The set Rd is obtained by augmenting Rt as follows. We first apply 
the diagnosability checking techniques discussed in Section 3 to Rt

to find out the net segments that are not diagnosable. For an edge e
that is not single fault diagnosable, we try to find a new ring passing 

Edge ei is diagnosable, remove ei from 
all rings in Rj with |Rj|=|Ri|

YYeess
NNoo

|Ei|=1
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it without going through the edges that are indistinguishable to e. If 
such a ring exists, it will be included in Rd. The diagnosability 
checking should be conducted for each added ring so that other 
edges that become diagnosable with the new ring will be found.  

This algorithm can be adjusted to the required diagnosis 
resolution to reduce the number of diagnostic rings in Figure 10.
Algorithm: IORD (Interconnect Oscillation Ring Generation for 
Fault Diagnosis)
Input: A hypergraph H = (V, L) representing a circuit 
Output: A set of rings Rd

1. Transform hypergraph H  into a new graph G = (V’’, E) with 
equivalent 2-pin net segments;

2. Generate a set of rings Rt for fault detection; 
3. Rd = Rt;
4. Conduct diagnosability check;
5. for every e E { 
6. if (e is not single-fault diagnosable)
7. Find a ring r to make e diagnosable;
8.   Rd = Rd  {r};
9.  Modify the diagnosability of all edges in E;
 }
10. return Rd;

Figure 10. The ring generation for fault diagnosis algorithm. 

The flowchart illustrating the process of diagnosis ring 
generation is given in Figure 11. 

V. Optimization Techniques for Interconnect Diagnosis 
Multiple oscillation rings cannot be applied simultaneously if 

they share some net segment (common edge constraint), or they go 
through the same scan path in a core (scan path conflict). In order to 
achieve the maximum concurrency (i.e., parallel test), we model all 
the constraints by a conflict graph, in which each ring is represented 
by a node, and two nodes are connected by an edge if they interfere 
with each other. The problem of finding the maximum concurrency 
tests can thus be reduced to the well-known graph coloring problem.

The number of test patterns can be greatly reduced whenever 
adaptive diagnosis is possible. In the adaptive diagnosis, a test 
pattern is selected according to the result of previous tests. An 
adaptive diagnosis tree, typically a binary tree, can be constructed 
according to the test patterns. For example, the adaptive diagnosis 
tree for the diagnosis example given in Figures 7 and 8 is illustrated 
in Figure 12.

For an n-net system, initially there are n+1 possible diagnosis 
results, namely fault-free ( ) and a single fault on net ei (fei) for 1 
i n. Each node in the tree represents a test pattern (ring), and the 
test outcome can be either pass (P) or fail (F). If the tree is balanced, 
the minimum number of diagnosis patterns required is log2(n+1) .

In order to construct a balanced adaptive diagnosis tree, in 
each internal tree node we need to select the test pattern (i.e. test 
ring) that evenly partitions the possible outcomes into two groups: 
Fail (F) and Pass (P). For example, in Figure 15, we choose the test 
pattern r3 as the first test, since it evenly partitions the six possible 
outcomes into Fail (fe1, fe2, fe3) and Pass ( , fe4, fe5). It can be seen 
that, in Figure 15, each test partitions possible outcomes into two 
groups whose cardinalities differ by at most 1. 

The upper bound on the number of adaptive diagnosis test 
sessions needed in our method can be computed as follows. Let the 
number of test rings (without diagnosis) be |Rt|, and the length of the 
longest test ring be Lh. In the worst case, we need to apply |Rt| rings 
to find out that there is a faulty net, and the last ring contains Lh net 
segments that are all passed by the ring only. It takes up to Lh–1
rings to distinguish these Lh possible faults, and thus the maximum 
number of diagnosis rings is |Rt|+ Lh–1.

Figure 11. Diagnosis ring generation procedure. 

F r3

{fe1, fe2, fe3}

{ , fe1, fe2, fe3, fe4, fe5}

r1 PF

{ , fe4, fe5}

r2 PF
r2 PF

{fe1}

{fe2} {fe3} { }

{fe4}
{ , fe5}

{fe5}

r1 PF

P

{fe2, fe3}

Figure 12. An adaptive diagnosis tree. 

VI. Experimental Results  
We tested the diagnosis algorithm based on six benchmark 

circuits. In Table I, where the first column gives the circuit names, 
and the next four columns give the circuit statistics (“Statistics”),
including the number of cores (#core), the number of pads (#pads),
the number of hypernets (#hyp), and the number of net segments 
(#net_segment). The 5th column, #net_segment, lists the number of 
net segments to be diagnosed in each benchmark. The next three 
columns (“Predetermined”) give the experimental results for 
predetermined diagnosis, including the number of rings required to 
detect all 2-pin nets (|Rt|) and to diagnose all single faults (|Rd|). The 
last column, |Rd|/|Rt|, gives the ratio of rings from 1.25X to 2.81X 
for the maximum diagnosis resolution vs. for fault detection. This 
ratio means that we need extra test time of 1.25X to 2.81X to 
diagnose the single fault in each net segment under the 
predetermined diagnosis method, compared to the IORT scheme. In 
each case, we also give the estimated testing time (given in 
parenthesis), obtained by assuming only 4 MHz measuring period as 
discussed in Section 2.1 to estimate the longest test application time 
for each ring. The time needed to set up the rings should be roughly 
proportional to the testing time. 

The next four columns (“analysis”) give the diagnosis related 
information after applying Rt rings. The column #OneRing gives the 
number of nets passed by only one ring. Since the purpose of Rt is to 
detect faults with the minimum number of rings, it is not surprising 
that most nets are passed by one ring only. Most nets that are not 
diagnosable at this stage fall into this set. Columns “#NoDiag” and 
“#EquClass” give the number of nets that are not diagnosable and 
the number of equivalence classes after applying Rt, respectively. 
Two faults are in the same equivalence class if their syndromes for 
the tests are identical. The last column in this group (“|Rd|–|Rt|”) 
gives the number of extra diagnosis rings required in each case to 

Generate a Diagnosis 
Ring

Diagnosability Check 

YYeess

NNoo

Diagnosability Check

Test Ring Generation 

Enough diagnosis 
resolution? 
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make all nets single-fault diagnosable. Assume that there are m
equivalence classes whose sizes are s1, s2, …, sm, respectively. The 
upper bound on the number of additional diagnosis rings “|Rd|–|Rt|” 
can be expressed as follows:

EquClassNoDiagmSS
m

i
i

m

i
i ##)1(

11

  (3) 

The upper bound on the required number of extra rings (|Rd|–|Rt|) is 
“(#NoDiag)–(#EquClass)”. The empirical results “|Rd|–|Rt|” differs 
from the theoretical results “(#NoDiag)–(#EquClass)” given in 
Equation (3) by small differences of only up to 6.64%.  

The last three columns (“adaptive”) compare the number of rings 
required in both predetermined (|Rd|) and adaptive diagnosis (|Ra|). 
After applying Rt rings, the size of the largest equivalence class for 
each benchmark is given in the column “max. EC”. In the worst 
case, the adaptive diagnosis needs to apply |Rt| rings, and then (max. 
EC)–1 rings for diagnosis. The number of the worst-case adaptive 
diagnosis rings is given in column “|Ra|”. The last column (|Rd|/|Ra|) 
shows the ratio of rings for the predetermined vs. adaptive diagnosis 
schemes. For the results shown in the column, the adaptive 
algorithm obtains 1.23X to 2.67X improvements over the 
predetermined diagnosis scheme. Also, from the normalized |Ra| and 
|Rt|, the test time of adaptive diagnosis is approximately equal to 
that for detection alone and this reveals the effectiveness of adaptive 
diagnosis.

The experimental results for the concurrent test are given in 
Table II. The 3rd column (|Rc|) lists the number of test sessions after 
applying the concurrency test under the assumed worst-case 
scenario of net directions, core lists, scan paths and boundary scan 
paths. When a set of rings are applied concurrently, we refer to 
these rings as a test session. The 4th column (|Rd|-|Rc|) gives the 
percentage of improvements. The improvement can be even better 
for general interconnect structures. The reduction in test time due to 
the concurrent test ranges from 0.27% to 9.66% with no hardware 
overhead.

VII. Concluding Remarks  
We have presented an IORD scheme for interconnect faults in 

SOC. In addition to the 100% fault detection coverage for each net
achieved by the IORT scheme, we have shown that fault location or 

fault diagnosis can also be done by including some extra test rings 
to achieve the optimal diagnosability (or the maximal diagnosis 
resolution) for each net segment. We have also presented two 
heuristics, diagnosability check and diagnosis ring generation, with 
theoretical study and integrated them into the IORD algorithm. 
Finally, two optimization techniques for improving interconnect 
diagnosability are proposed and showed to be effective. We have 
further compared the predetermined, adaptive and concurrent 
diagnosis schemes. Experimental results have justified the 
efficiency and effectiveness of the proposed methods. 

References 
[1] M. Tehranipour, N. Ahmed, M. Nourani, “Testing SoC Interconnects 

for signal integrity using boundary scan”, in Proc VTS, 2003. 
[2] Semiconductor Industry Association (SIA), International Technology 

Roadmap for Semiconductors 2003 Edition (ITRS), 2003. 
[3] W. K. Kautz, “Testing of faults in wiring interconnects,” IEEE Trans. 

Computers, vol. C-23, no. 4, pp. 358-363, Apr. 1974. 
[4] X.-T. Chen, F. J. Meyer, and F. Lombardi, “Structural diagnosis of 

interconnects by coloring,” ACM Trans. Design Automation Electronic 
Systems, vol. 3, no. 2, pp. 249-271, Apr. 1998. 

[5] Y. Kim, H.-D. Kim, and S. Kang, “A new maximal diagnosis algorithm 
for interconnect test,” IEEE Trans. VLSI, vol. 12, no. 5, pp. 532-537, 
May 2004. 

[6] J.-C. Lien and M. A. Breuer, “Maximal diagnosis for wiring networks,” 
in Proc. ITC, pp. 71-77, 1991. 

[7] W.-T. Chen, J.-L. Lewandowski, and E. Wu, “Optima diagnostic 
methods for wiring interconnects,” IEEE Trans. Computer-Aided 
Design, vol. 11, no. 9, pp. 1161-1166, Sep. 1992. 

[8] E.J. Marinissen, B. Vermeulen, H. Hollmann, and R.G. Bennetts, 
“Minimizing pattern count for interconnect test under a ground bounce 
constraint,” IEEE Design &. Computers, Vol. 20, No. 2, pp. 8-18, Mar-
April, 2003. 

[9] M. Kaneko and K. Sakaguchi, “Oscillation fault diagnosis for analog 
circuits based on boundary search with perturbation model,” in Proc. 
ISCAS, pp93-96, 1994. 

[10] K. Arabi and B. Kaminska, “Oscillation-based test strategy for analog 
and mixed-signal integrated circuits,” in Proc. VTS, 1996. 

[11] K. S.-M. Li, C.-L. Lee, C. Su, J.E. Chen, “Oscillation ring based 
interconnect test for SOC” in Proc. ASPDAC, pp. 184-187, 2005. 

[12] F. DaSilva, Y. Zorian, L. Whetsel, K. Arabi, R. Kapur, “Overview of 
the IEEE P1500 standard,” in Proc. ITC., pp. 988-997, 2003. 

Table I: Experimental results for Interconnect Diagnosis both for Predetermined and Adaptive Methods. 

Statistics Predetermined Analysis AdaptiveCircuit
#core #pad #hyp #net_

segment
|Rt| |Rd| |Rd|/

|Ra|
#One
Ring

#No
Diag

#Equ
Class

|Rd|–|Rt| max.
EC

|Ra| |Rd|/
|Ra|

ac3 27 75 211 416 133(33.3ms) 374(93.5ms) 2.81 389 323 68 241 8  140(35ms) 2.67
ami33 33 42 117 343 242(60.5ms) 303(75.8ms) 1.25 309 126 59 61 5 246(61.5ms) 1.23
ami49 49 22 361 475 156(39ms) 386(96.5ms) 2.47 406 337 88 230 9 162(40.5ms) 2.38
apte 9 73 92 136 73(18.3ms) 122(30.5ms) 1.67 127 94 40 49 4 76(19ms) 1.61
hp 11 45 72 195 81(20.3ms) 164(41ms) 2.02 176 145 51 82 7 87(21.8ms) 1.89
xerox 10 2 161 356 218(54.5ms) 342(85.5ms) 1.57 346 214 86 124 5 222(55.5ms) 1.54
Comp.     0.9679        1  

Table II: Concurrent Test Sessions. 

Circuit |Rd| |Rc| (worst case) |Rd|-|Rc|
ac3 374 373 1 (0.27%) 
ami33 303 290 17 (5.86%)
ami49 386 352 34 (9.66%)
apte 122 119 3 (2.52%) 
hp 164 160 4 (2.50%) 
xerox 342 327 15 (4.59%)
Comparison  1 4.57% 

Table III: Comparison between Theoretical Bounds and 
Experimental Results. 

Circuit #NoDia
g

#EquCla
ss

Eq (3) 
(#NoDiag-
#EquClass)

Extra
Rings

(|Rd|–|Rt|)

(#NoDiag-
#EquClass)

and (Rd|–|Rt|) 
ac3 323 68 255 241 14 (5.49%)
ami33 126 59 67 61 6 (8.96%) 
ami49 337 88 249 230 19 (7.63%)
apte 94 40 50 49 1 (2.00%) 
hp 145 51 94 82 12 (12.77%)
xerox 214 86 128 124 4 (3.13%) 
Comparison    1 6.64% 
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