
Efficient Identification of Multi-Cycle False Path

Kai Yang, Kwang-Ting Cheng
University of California, Santa Barbara

{kyang, timcheng}@ece.ucsb.edu

Abstract

Due to false paths and multi-cycle paths in a cir-
cuit, using only topological delay to determine the
clock period could be too conservative. In this paper,
we address the timing analysis problem by consid-
ering both single-cycle and multi-cycle operations.
We give a precise definition of multi-cycle false paths
and provide the necessary conditions for multi-cycle
sensitizable paths. We then propose an efficient algo-
rithm to identify multi-cycle false paths. By consid-
ering both single-cycle and multi-cycle false paths,
we could derive a shorter clock period than that de-
termined by existing methods. Finally, we propose
an algorithm to compute the valid clock period and
demonstrate the improvement in clock frequency by
taking multi-cycle false paths into account.

1 Introduction
The clock period of a circuit is determined by the de-
lay of the longest path in the circuit. Static timing
analysis, which computes path delay primarily based
on topological delay, is an efficient approach for de-
termining the valid clock period.

However, previous research shows that due to false
paths [1–3] and multi-cycle paths [4–9] , it might be
too conservative to use the topological delay for cal-
culating the path delay. By taking into account both
false paths and multi-cycle paths, we find that the
timing constraints of the circuit could be relaxed.

The actual delay of a circuit is determined by the
delay of its longest sensitizable paths. A false path
is a path that cannot be sensitized by any input vec-
tor. The definition of false paths and algorithms for
identifying all or a subset of them have been studied
for years [1–3,10–12]. In [10], Cheng and Chen pro-
posed the notion of functional unsensitizable paths
and demonstrated that those paths will not affect the
circuit timing under any delay configuration.

A multi-cycle path in a sequential circuit is a com-
binational path which does not have to complete the
propagation of the signals along the path within one
clock cycle. A k-cycle path would have up to k clock
cycles to propagate the transition from the source to
the destination. The clock period can therefore be re-
laxed if the longest paths are multi-cycle paths. Fig-
ure 1 shows a circuit containing multi-cycle paths.

DFF1
0

DFF1
0

DFF DFF DFF

Combinational
Circuit

FF0 FF1

OUT
IN

FF2 FF3 FF4

MUX1 MUX2

Figure 1: Example of Multi-Cycle Paths [5]

The initial values in flip-flops {FF2, FF3, FF4},
which form an autonomous circular shift regis-
ter, are {1, 0, 0} respectively. Therefore, the se-
quence of states in these three flip-flops would be:
{1, 0, 0} → {0, 1, 0} → {0, 0, 1} → {1, 0, 0}.
Multiplexer MUX1 selects primary input data IN
when {FF2, FF3, FF4} are in state {1, 0, 0}. Then
FF0 latches the value IN and starts launching the
new value toward the combinational circuit while
{FF2, FF3, FF4} are switched to state {0, 1, 0}.
Meanwhile, MUX2 selects the output of the combi-
national block when {FF2, FF3, FF4} are in state
{0, 0, 1}. Then FF1 latches the new value when
{FF2, FF3, FF4} are switched to state {1, 0, 0}.
Since it requires two cycles for {FF2, FF3, FF4}
from {0, 1, 0} to {1, 0, 0}. Therefore, all the paths
from FF0 to FF1 are 2-cycle paths. That is, the
circuit would allow 2 clock cycles to complete the
propagation of transitions along these paths.

Multi-cycle paths have been studied for several
years [4–9]. For microprocessor designs, the method
proposed in [8] utilizes functional information such
as instruction-set architecture (ISA), to extract multi-
cycle paths. The proposed procedure, manually ex-
tracting the functional constraints, may not be scal-
able for larger and complex designs. The methods
proposed in [5–7] are based on the stable-state anal-
ysis to identify multi-cycle flip-flop pairs. All paths
between the multi-cycle flip-flop pairs are multi-
cycle paths. Such stable-state analysis could be done
by BDD [5], SAT [6], or ATPG [7] techniques.

However, considering signals’ stable states only,
which is the assumption made in all previous meth-
ods for multi-cycle path identification [5–7], may re-
sult in optimistic (and, thus, invalid) prediction of the
clock period. In [7], the problem introduced by the
presence of static hazards was described but no clear

1

analysis was provided to address this problem.

In this paper, we first define the multi-cycle false
paths and multi-cycle sensitizable paths. We then
provide some necessary conditions for multi-cycle
sensitizable paths. We use the functional sensitiza-
tion criterion, introduced in [10], to check path sen-
sitizability, so the static-hazards problem can be im-
plicitly considered. Then, we address the problem
of determining valid clock periods for circuits con-
taining multi-cycle paths. We propose an efficient
method for computing the valid clock period, which
takes into account both single-cycle and multi-cycle
false paths.

The rest of the paper is organized as follows. In
Section 2, we review some representative approaches
on this topic. In Section 3, we review the definitions
to be used throughout this paper. In Section 4, we
give the definition of multi-cycle paths. The neces-
sary conditions for single-cycle and multi-cycle sen-
sitizable paths are derived in Section 5. An efficient
algorithm to identify the multi-cycle false path is in-
troduced in Section 6. In Section 7, we address the
problem of computing valid clock period. An iter-
ative method to calculate the valid clock period is
proposed. In Section 8, we show some experimental
results, followed by the conclusions.

2 Background

A multi-cycle path in a sequential circuit is a com-
binational path which does not have to complete the
propagation of the signal transition from the source
to the destination of the path in single clock cycle. A
k-cycle path is a path that is allowed to use k clock
cycles to propagate the transition. By considering
multi-cycle paths, the timing constraints could be re-
laxed. That is, the minimal clock period could be
shorter than the delay of the multi-cycle path.

To analyze multi-cycle operations, the method
proposed in [6, 7] is based on checking the stable
states in flip-flop pairs. A flip-flop pair (FFi, FFj)
is classified as a multi-cycle flip-flop pair, if there ex-
ist input vectors to satisfy Equation 1, where FFi(t)
denotes the stable state in flip-flop i at cycle t:

FFi(t) �= FFi(t + 1) ⇒ FFj(t + 1) = FFj(t + 2)
(1)

All paths between flip-flop pairs (FFi, FFj) are
then declared as multi-cycle paths. However, be-
cause the stable-state checking only checks the nec-
essary conditions for multi-cycle paths, it might not
result in correct classification of multi-cycle flip-flop
pairs due to the presence of static-hazards [7]. The
problem was pointed out in [7] but no solution was
provided. Moreover, the stable-state checking could
not determine the multiplicity, k, of the identified
multi-cycle paths. None of the previous work has
yet addressed the problem of determining the valid
clock period for circuits with multi-cycle paths.

In the following section, we first give the notation
and definition of path sensitization used throughout
the paper.

3 Definition

A path P x = (G0, f0, G1, f1, ..., fm−1, Gm) is a se-
quence of gates and signals associated with a transi-
tion x ∈ {rising, falling} at the source of the path.
Gate G0 is either a primary input or the output of an
FF, Gm is either a primary output or the input of an
FF. Signal fi, 0 ≤ i ≤ m − 1 is an on-input of P x

which connects gate Gi to Gi+1. A signal is called a
side-input of P x associated with fi if it is connected
to Gi, but not originated from Gi−1. The delay of a
path P x is denoted as d(P x). A path set η contains
all paths in a circuit.

A state of a circuit, denoted as S, indicates the
values in all or a subset of flip-flops at certain cycle.
The controlling (non-controlling) value of gate G is
denoted by cv(G) (ncv(G)).

Let v =< v1, v2 > be an input vector pair and
assume v2 becomes stable at time t = 0. The logic
value stabilized at a signal f or the output of a gate G
is called its stable value under v2. The time when the
value at a signal f or the output of a gate G becomes
stable is called its stable time under v2.

The latest arrival time of signal f for value x, as
arx

max(f), is the delay of the longest path from any
primary input or the output of an FF to signal f for
a corresponding transition. Similarly, the earliest ar-
rival time is denoted as arx

min(f).

3.1 Path Sensitization

Signal f , which is connected to G, is considered to
dominate G if the stable value and the stable time at
G are determined by those at f . A path is considered
to be sensitized, under a delay configuration, by a
vector pair if each on-input of the path dominates its
connected gate. Given a delay configuration, a path
is a true (sensitizable) path if there exists at least
one vector pair which sensitizes the path. Otherwise,
it’s a false path.

Under a delay configuration, a vector pair sensi-
tizes a path iff each on-input of the path is either the
earliest controlling value or the latest non-controlling
input with all its side-inputs being non-controlling
inputs. This criterion is called the exact sensitiza-
tion criterion [2].

To efficiently check the sensitizability of target
paths, a delay-independent method, using the func-
tional sensitization criterion, is proposed in [10]. If
there exists an input vector v such that all the side-
inputs of fi along P x settle to non-controlling val-
ues on v when the on-input fi has a non-controlling
value, then P x is functional sensitizable. Otherwise,
P x is functional unsensitizable.

2

Because functional sensitization, a delay-
independent criterion, is only a necessary condition
of exact sensitization, an identified functional
sensitizable path might not be sensitizable under
certain delay configurations. On the other hand, the
identified functional unsensitizable paths must be
false under any arbitrary delay configuration.

4 Multi-Cycle Path
In this section, we give a precise definition of multi-
cycle path and introduce a model for illustration and
analysis.

A k-cycle path P x could complete the propagation
of the signal transition from the source to the desti-
nation in k cycles. This implies that the clock pe-
riod clk could be shorter than the delay of P x. The
transition, along P x, travels through a segment segi
in cycle i ,and then continues propagating through
segment segi+1 in the next cycle. A k-cycle path
can therefore be divided into several non-overlapping
segments segi where P x = ∪(segi) for 1 ≤ i ≤ k.
The delay d(segj) of each segment segj , for 1 ≤
j ≤ k − 1, is equal to the clock period clk. The
delay of the last segment segk, d(segk) is equal to
modulo(d(P x), clk). Each segment segi represents
the segment through which the transition travels in
cycle i. Since every segment needs to consist of in-
tegral number of stages (gates), d(segj) might not
perfectly match clk. In this case, we ignore the gates
which are overlapped for sensitization checking.

We use the timeframe expanded model of the se-
quential circuit to illustrate how a transition propa-
gates through a multi-cycle path. Segment segi in
timeframe-i (TF-i) represents the transition propaga-
tion path in cycle i. Figure 2 shows an example of a
2-cycle path. The same path appears in both TF-1
and TF-2. The transition is launched at the source
of the path in TF-1. The transition travels through
segment seg1 in TF-1 (bold line shown inside TF-1)
and then continues to travel through seg2 to reach the
destination in TF-2 (bold line shown inside TF-2).

seg 1
2seg

timeframe−1 timeframe−2

delay=clk delay=d(Px)−clk

Figure 2: Example of 2-Cycle Path

5 Necessary Conditions for Path
Sensitization

Due to the delay variation, the sensitizability of a
path might be different from chip to chip. To identify

paths which are false under any delay configuration,
we derive necessary conditions , which are delay-
configuration independent, for both single-cycle and
multi-cycle path sensitization. Paths which cannot
satisfy these necessary conditions are false paths.

5.1 Single-Cycle Paths

The following is a necessary condition for a single-
cycle sensitizable path: A single-cycle sensitizable
path P x must satisfy the functional sensitization cri-
terion [10]. Otherwise, P x is false.

The set of single-cycle false paths, under a delay
configuration M and a state S, is denoted as ζM,S

1 .
The set of other paths which do not belong to ζM,S

1

is denoted as ωM,S
1 . That is, ωM,S

1 ∪ ζM,S
1 = η and

ωM,S
1 ∩ ζM,S

1 = φ.

5.2 Multi-Cycle Paths

The following is a necessary condition for a multi-
cycle sensitizable path: Under the timeframe ex-
panded model, each segment segi of a multi-cycle
sensitizable path P x must satisfy the functional sen-
sitization criterion in its corresponding timeframe.
Otherwise, P x is false.

on−input

timeframe−(n)

ncv

cv

cv

ncv

ncv(late)

cv(earlier)

G

G

G

ncv(early)

G

timeframe−(n+1)

cv

ncv

ncv

ncv

cv(later) or ncv

G

G

(a)

(b)

(c)

Figure 3: Side-input dominates gate G in TF-(n)

We prove the necessary condition for a multi-cycle
sensitizable path by contradiction. We show that
if the propagated transition is blocked in any seg-
ment (i.e. the functional sensitization criterion is vio-
lated), then the transition cannot continue propagat-
ing through the multi-cycle path (i.e. it’s a multi-
cycle false path). The left hand side of Figure 3
enumerates all possible conditions that a transition,
propagating through multi-cycle path P x and arriv-
ing at gate G in timeframe-(n), would be blocked by
the side-input. The right hand side shows the values
of on-input and side-input of gate G in timeframe-
(n + 1). In the first case, as shown in Figure 3 (a),
the on-input propagates a controlling value which ar-
rives at gate G in timeframe-(n). If the side-input
has a controlling value which arrives earlier than
the on-input, then the side-input dominates gate G
in timeframe-(n). In this case, regardless of the
side-input value in timeframe-(n + 1), either non-
controlling or controlling, the output of gate G will
not change its value in timeframe-(n + 1) (i.e. no

3

transition occurs at gate G). Therefore any tran-
sition propagated through this gate must be domi-
nated by the side-input. For cases shown in Figure 3
(b)(c), the on-input propagates a non-controlling
value which arrives at gate G in timeframe-(n). If
the side-input has a controlling value (case (c)), or a
non-controlling value which arrives later than the on-
input (case (b)), then the side-input dominates gate
G in timeframe-(n). In this case, even if the side-
input becomes a non-controlling value in timeframe-
(n + 1), the output of gate G either will not change
its value or the new value will be dominated by the
side-input in timeframe-(n + 1). Therefore, we can
conclude that, in order to propagate a transition along
a multi-cycle path P x, each segment needs to be sen-
sitizable in its corresponding timeframe.

The set of k-cycle false paths, under a delay con-
figuration M and an initial state S, is denoted as
ζM,S
k . The initial state S indicates the state at which

the transition is launched from the source of P x. The
set of other paths which do not belong to ζM,S

k is

denoted as ωM,S
k . That is, ωM,S

k ∪ ζM,S
k = η and

ωM,S
k ∩ ζM,S

k = φ.

6 Identification of Multi-Cycle False
Paths

In this section, we introduce a segment-based check-
ing algorithm to identify multi-cycle false paths.
The algorithm checks the necessary condition de-
scribed in Section 5.2. Under the timeframe ex-
panded model, the algorithm, summarized in Algo-
rithm 1, checks the sensitizability of each segment
of the multi-cycle path at each timeframe. The in-
puts of the algorithm are a path or a partial path P x,
the multiplicity k, and the clock period clk.

Algorithm 1 Segment-Based Checking(P x, k, clk)
For each f , calculate arx

max(f), for x = {0, 1}
Construct timeframe expanded model combk for P x

for i = 1, i ≤ k, i = i + 1 do
// check the sensitization of all side-inputs in segi

for each side-input f connected to G in segi do
if clk ≥ ar

ncv(G)
max (f) then

if on-input of G propagates an ncv(G) then
impose ncv(G) to f at timeframe-i of
combk

end if
end if

end for
end for
Perform logic implication. If conflict, P x is false.
Otherwise P x is true

We first calculate the latest arrival time for value
x = 0 and x = 1 for each signal f , which is de-
noted as arx

max(f). We then construct the time-

frame expanded model combk and divide P x into
non-overlapping segments. The delay of each seg-
ment segj for 1 ≤ j ≤ k− 1 is clk. The delay of the
last segment segk is modulo(d(P x), clk).

We check the sensitizability of P x segment by
segment through combk. For each segment segi, the
sensitization constraints are imposed, followed by
implication, on the expanded circuit combk in its cor-
responding timeframe i. Note that the side-inputs of
segi may not reach its stable value in timeframe i be-
cause a side-input may also be part of a multi-cycle
path. Therefore, instead of imposing all logic con-
straints required for functional sensitization of segi,
we impose constraints only at side-inputs which can
reach stable value in timeframe i. For example, if
value ncv(G) is needed at side-input f sensitizing
segment segi in timeframe-i, and the latest arrival
time of f for value ncv(G),ar

ncv(G)
max (f) , is smaller

than clk (which means signal f would become stable
at ncv(G) within this cycle) , then we impose value
ncv(G) at f in timeframe-i of combk. Otherwise, no
side-input constraint is imposed. Figure 4 shows an
example of the segment-based checking for a 2-cycle
path. To sensitize the multi-cycle path P x, signals a
and b need to be at logic ”1” in timeframe-1. Simi-
larly, to sensitize the segment in timeframe-2, signals
c and d need to be at logic ”1”.

timeframe−2timeframe−1

P

a=1

c=1

d=1
b=1

Target Circuit

x

Figure 4: Example of Segment-Based Checking

After imposing the sensitization constraints, we
perform logic implication on combk to see whether
there is any conflict. If a conflict occurs, P x is false.
Otherwise it classified as true. Please note that the
identified false paths must be false. However, be-
cause we only check a necessary condition, the rest
may or may not be true.

7 Valid Clock Period

Traditionally, the valid clock period is determined
by the delay of the longest single-cycle sensitizable
path. However, due to the presence of multi-cycle
paths, the clock period might be relaxed. Equa-
tion (2) summarizes the constraints for the valid
clock period in presence of multi-cycle operations.

clk ≥ (max(d(P x))/m,∀P x ∈ ωM,S
m), 1 ≤ m ≤ k

(2)

Based on Equation (2), we propose a method to
calculate the valid clock period for circuits with
multi-cycle paths.

4

7.1 Calculation of Valid Clock Period

Using an exemplar circuit architecture, shown in Fig-
ure 5, as the driver, illustrate the proposed iterative
method for determining the valid clock period. In
Figure 5, flip-flops {FFc0, FFc1, ..., FFcn} forms
an autonomous circular shift register. The transitions
at the inputs of the combinational sub-circuit are
launched when the state in {FFc0, FFc1, ..., FFcn}
switches from {1, 0, 0, ..., 0} to {0, 1, 0, ..., 0}.

...
DFF1

0
DFF1

0

DFF1
0

IN_0

IN_i

OUT_0

OUT_j

Circuit
Combinational

...

...
DFF1

0

DFF DFF

initial state of {FFc0, FFc1, ..., FFcn} = {1,0,0,...,0}

FFc0 FFcn

Figure 5: Exemplar Circuit Architecture

We make the following observations regarding the
output-MUX in Figure 5, whose gate-level imple-
mentation is shown in Figure 6. The select-line (sel)
of the output-MUX always has a controlling value
of gate G1 when {FFc0, FFc1, ..., FFcn} are not in
state {0, 0, 0, ..., 1}. In addition, the latest arrival
time of the select-line is always earlier than the earli-
est arrival time of In1. Therefore, based on the exact
sensitization criterion, transitions traveling through
In1 to gate G1 will always be blocked by the select-
line when {FFc0, FFc1, ..., FFcn} are not in state
{0, 0, 0, ..., 1}.

Combinational
Circuit

G 1

MUX

sel

In1

Figure 6: Output MUX

To calculate the valid clock period for a multi-
cycle circuit similar to the one in Figure 5, we pro-
pose an iterative method which is shown in Figure 7.
In each iteration, we identify the longest k-cycle true
path and update the circuit maximum delay MAX.
The valid clock period will then be determined by
the final MAX.

In the preprocess step, we first identify all signals
connected to the output-MUXs (such as signal In1 in
Figure 6) and group these signals as FS. The itera-
tive procedure then identifies the longest single-cycle
(k = 1) true path, which starts from the output of an
FF and a PI. To efficiently identify the longest true
path, we utilize the Best-First-Search (BFS) method
[11] to identify the longest path. We then check

Done
clk = MAX

Preprocess

Update the MAX delay

Identify the longest

(BFS method + segment−based checking)

MAX=0

k = 1

NoYes
Exists path P’, d(P’)/k+1 > MAX?

k=k+1

k−cycle true path Px,
delay of Px = d(Px)

if MAX<d(Px)/k,then MAX=d(Px)/k

Figure 7: Calculation of Valid Clock Period

the sensitizability using the segment-based check-
ing algorithm. The inputs to the checking procedure
are the path/partial-path identified by the BFS , k,
and the delay of the path/partial path. In addition
to checking functional sensitizability, we also utilize
FS (the set of signals that we group in the prepro-
cessing phase) to help identify the false paths. As-
sume the propagated transition of a path P x arrives at
signal f in cycle-i, at which {FFc0, FFc1, ..., FFcn}
are not in state {0, 0, 0, ..., 1}. If the f belongs to
FS, then P x is false. Once the longest single-cycle
sensitizable path is identified, its delay is then as-
signed to MAX.

In the next iteration, we first identify paths P
whose delay divided by k + 1 are longer than MAX.
If no such path exists, the process stops and MAX is
the minimal valid clock period. Otherwise, we check
k+1-cycle sensitizability of each path in P . If a path
in P is identified as a k + 1-cycle true path and its
delay divided by k + 1 is longer than MAX, then we
update MAX. After all paths in P are processed, we
continue on to the next iteration.

8 Experimental Result

For the experiments, we constructed 2-cycle oper-
ation circuits by replacing the combinational sub-
circuit in Figure 5 with ISCAS-85 circuits and con-
structed the autonomous circular shift register with
three registers {FFc0, FFc1, FFc2}. The initial val-
ues in flip-flops {FFc0, FFc1, FFc2} are {1, 0, 0}
respectively.

For the given circuits, we compare the result-
ing clock periods for three different methodologies:
static timing analysis, single-cycle-false-path-aware
timing analysis [12] ,and the proposed method which
considers both single-cycle and multi-cycle false
paths. All the methods are implemented by C++ and
run on Linux workstations. Table 1 summarizes the
experimental results.

The first column shows the name of the circuit
used as the combinational sub-circuit in Figure 5.
The second column shows the delay of the longest

5

path of the circuit which is calculated by static tim-
ing analysis, denoted as clksta. The third column
shows the valid clock period derived by the longest
single-cycle sensitizable path, denoted as clksc The
fourth column shows the resulting clock clkmc cal-
culated by the proposed method, and the CPU time
for computing the valid clock period is listed in the
fifth column. As indicated, the clock period derived
by the proposed method is shorter than those derived
by traditional methods.

Table 1: Valid Clock Period
Replace-ckt clksta(ns) clksc clkmc CPU(s)

c17 13.4 13.4 6.7 0.0
c1355 135.2 135.2 67.6 0.11
c1908 184.8 184.8 92.4 0.07
c2670 125.7 125.7 62.8 0.11
c3540 226.1 224.8 112.4 0.48
c432 110.5 107.4 53.7 0.6
c449 135.4 135.4 67.7 0.55
c5315 216.6 202.0 101.0 1.92
c7552 188.6 181.7 90.8 1.77
c880 109.6 109.6 54.8 0.04

The reason for the conservative result of clksc is
that the traditional methods do not take the circuit
states into account. It’s assumed that all primary
inputs and outputs of FFs could have any value.
So some paths classified as false by the proposed
method are classified true in traditional methods.

Previous work [7] addressed the problem of sam-
pling error in presence of static hazards. Such a prob-
lem will not occur if the clock period is determined
by the proposed method. If a static-hazard is propa-
gated, then it must go through at least one true path.
In the proposed method, the clock period is derived
from the longest true path of the circuit, so the static-
hazard will disappear, and the signals should become
stable before a FF latches its data.

9 Conclusion
In this paper, we first define the multi-cycle false
paths and multi-cycle sensitizable paths. We then
provide the necessary conditions for multi-cycle sen-
sitizable paths. We use the functional sensitization
criterion, introduced in [10], to check the path sen-
sitizability, so the static-hazards problem, ignored
in previous approaches, can be implicitly consid-
ered. Then, we provide a thorough analysis for the
problem of determining valid clock period for cir-
cuits containing multi-cycle paths. We have pro-
posed an algorithm to compute the valid clock period
and demonstrate the improvement to clock frequency
by considering multi-cycle false paths.

References

[1] P. McGeer and R. Brayton, Efficient Algorithms
for computing the Longest Viable Path in a Com-

binational Network. Proc. IEEE/ACM Int. Conf.
Computer-Aided Design (ICCAD), 1989.

[2] H.-C. Chen, D. H.-C. Du, and L.-R. Liu, “Critical
path selection for performance optimization”, IEEE
Trans. Computer-Aided Design of Integrated Cir-
cuits and Systems, vol. 12, no. 2, pp. 185–195, Feb.
1993.

[3] S. Davadas, K. Keutzer, S. Malik, and A. Wang,
“Certified timing verification and the transition de-
lay of a logic circuit”, IEEE Trans. VLSI Systems,
vol. 2, no. 3, pp. 333–342, Sept. 1994.

[4] A. P. Gupta and D. P. Siewiorek, Automated
Multi-Cycle Symbolic Timing Verification of
Microprocessor-based Designs. Proc. IEEE/ACM
Design Automation Conf. (DAC), 1994.

[5] K. Nakamura, K. Takagi, S. Kimura, and K. Watan-
abe, Waiting False Path Analysis of Sequential
Logic Circuits for Performance Optimization. Proc.
IEEE/ACM Int. Conf. Computer-Aided Design (IC-
CAD), Nov. 1997.

[6] K. Nakamura, S. Maruoka, S. Kimura, and
K. Watanabe, Multi-Cycle Path Detection based on
Propositional Satisfiability with CNF Simplification
using Adaptive Variable Insertion. IEICE Trans. on
Fundamentals, Dec. 2000.

[7] H. Higuchi, An Implication-based Method to De-
tect Multi-Cycle Paths in Large Sequential Circuits.
Proc. IEEE/ACM Design Automation Conf. (DAC),
June 2002.

[8] W.-C. Lai, A. Krstic, and K.-T. Cheng, “Function-
ally testable path delay faults on a microprocessor”,
IEEE Design & Test of Computers, vol. 15, 2000.

[9] P. Ashar, S. Dey, and S. Malik, Exploiting multi-
cycle false paths in the performance optimization
of sequential circuits. Proc. IEEE/ACM Int. Conf.
Computer-Aided Design (ICCAD), 1992.

[10] K.-T. Cheng and H.-C. Chen, “Classification and
identification of nonrobust untestable path delay
faults”, IEEE Trans. Computer-Aided Design of In-
tegrated Circuits and Systems, vol. 15, no. 8, pp.
845–853, Aug. 1996.

[11] W. Qiu and Walker D.M.H., An efficient algorithm
for finding the k longest testable paths through each
gate in a combinational circuit. Proc. Int. Test Conf.
(ITC), 2003.

[12] J.-J. Liou, A. Krstic, L.-C. Wang, and K.-T. Cheng,
False-path-aware statistical timing analysis and effi-
cient path selection for delay testing and timing val-
idation. Proc. IEEE/ACM Design Automation Conf.
(DAC), 2002.

6

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

