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Abstract— Flash memory has been widely considered as a
good alternative for storage system implementations because it of-
fers superior vibration tolerance and power efficiency, compared
to hard-disks. Because of its unique characteristics, direct appli-
cations of disk management methods over flash memory might
result in performance degradation and even the reducing of the
lifetime. The management issues become even more challenging,
especially when the capacity of flash memory increases signifi-
cantly in the past few years. In this paper, we summarize our
work on several important issues in flash memory management,
where system performance and management overheads are con-
sidered. The capability of the proposed methodology was evalu-
ated by a series of experiments to provide more insights in system
designs.

I. INTRODUCTION

Flash memory is widely adopted as an alternative for storage
system designs because of its nature in non-volatility, shock-
resistance, and low power consumption. It is also considered
as being low cost (compared to SRAM or DRAM) and hav-
ing good performance (compared to disks) in storage system
implementations. Due to its unique characteristics in manip-
ulations and market definitions, different challenging issues
are raised, compared to those based on disks. There are two
critical and inter-dependent issues that must be addressed by
most vendors and researchers: Performance and overheads.
While good system performance is a must for many appli-
cations, most vendors would only give restricted budgets on
various system overheads, such as the memory space size for
flash management. How to provide a good design with reason-
able performance under given overheads constraints is always
a question faced by many vendors and researchers.

The management of flash memory is carried out by ei-
ther software on a host system (as a raw medium) or hard-
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ware/firmware of the device for flash memory. In particu-
lar, Kawaguchi, Nishioka, and Motoda [13] proposed a flash-
memory translation layer to provide a transparent way to ac-
cess flash memory through the emulating of a block device.
Wu and Zwaenepoel [19] proposed to integrate a virtual mem-
ory mechanism with a non-volatile storage system based on
flash memory. Native flash-memory file systems were also
presented without imposing any disk-aware structures on the
management of flash memory [9, 16]. Kuo and Chang ex-
plored performance issues of flash-memory storage systems
by considering new system architectures [4], an energy-aware
scheduler [7], and a deterministic garbage collection mecha-
nism [6]. In [18], Wu, Kuo, and Chang provided efficient roll
back and quick mounting for flash-memory file systems. How
to efficiently handle fine-grained updates due to index access
of spatial data over flash memory is also discussed [17]. In ad-
dition to the work from the academics, many implementation
designs and specifications were proposed in the industry, e.g.,
[1, 2, 14, 11].

This paper summarizes our work in several design issues
that are involved with system performance and overheads con-
siderations [4, 5, 12]. We shall first present our work on how
to efficiently identify hot data in data access over flash mem-
ory under a very restricted memory-space constraint, where the
identification of hot data is important in the improvement of
system performance and the reducing of overheads in garbage
collection. We shall then summarize our work on perfor-
mance improvement with multiple banks, where the relation-
ship among performance, capacity utilization, and garbage col-
lection overheads is considered. We will then present an effi-
cient space-management scheme with variable granularities for
large-scale flash memory, in which memory-space overheads
will become overwhelming in careless designs. Experimental
results are presented to demonstrate the capability of the pro-
posed methodology.

The rest of this paper is organized as follows: In Section II,
the designs of flash-memory storage systems and the motiva-
tion of this work are presented. Section III summarizes our
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work that is involved with system performance and overheads
considerations [4, 5, 12]. Some experimental results are shown
in Section IV. Section V is the conclusion.

II. DESIGNS OF FLASH-MEMORY STORAGE SYSTEMS

Layered designs are usually adopted for the implementa-
tions of flash-memory storage systems, regardless of hardware
or software implementations of certain layers. The Memory
Technology Device (MTD) driver and the Flash Translation
Layer (FTL) driver are the two major layers for flash-memory
management, as shown in Fig. 1. Each flash-memory bank
can operate independently and is composed of flash-memory
chips. The MTD driver provides lower-level functionalities
of a storage medium, such as read, write, and erase. Based
on these services, higher-level management algorithms, such
as wear-leveling, garbage collection, and physical/logical ad-
dress translation, are implemented in the FTL driver. The ob-
jective of the FTL driver is to provide transparent services for
user applications and file systems to access flash memory as a
block-oriented device.

A flash memory chip is partitioned into blocks, where each
block has a fixed number of pages, and each page is of a fixed
size, e.g., 512B. Due to hardware architecture, pages are ba-
sic write-operation units while blocks are basic erase-operation
units. Initially, all pages in flash memory are considered as
“free.” After a page has been written, it is no longer available
unless an erase operation is performed. When a piece of data
over a page needs to be modified, out-place update is usually
adopted for performance consideration since erase operations
take time. The pages stored the old versions of the data are
considered as “dead,” while the page stored the newest version
of data is considered as “live.” After sustained write opera-
tions, the number of free pages would be low, and the system
must reclaim free pages (referred to as garbage collection) for

further writes.

The operation model of flash memory, in general, consists of
two phases: setup phase and busy phase. For example, the first
phase (setup phase) of a write operation is for command setup
and data transfer. The command, the address, and the data
are written to proper registers of flash memory in order. The
second phase (busy phase) is for busy-waiting of the data being
flushed into flash memory. The operation of reads is similar to
that of writes, except that the sequence of data transfer and
busy-waiting is inverted. The phases of an erase is as the same
as those of a write, except that no data transfer is needed in the
setup phase. The control sequence of read, write, and erase are
illustrated in

The implementation of the FTL driver could consist of an
allocator and a cleaner. The allocator is responsible to the
finding of proper pages on flash memory to dispatch writes,
and the cleaner is responsible to the reclaiming of pages with
invalidated data, where space reclaiming is referred to as
garbage collection. Since the unit of erase operations is block,
live pages over the selected block (if any) must be copied to
some free pages of other blocks before the erasure. With a
proper garbage-collection policy, the number of overall live-
page copying could be much reduced, from which the free
pages can be utilized efficiently. On the other hand, a block
might be worn out after about 106 erasures under the current
technology. When a block is worn out, its reliability can no
longer be guaranteed. A poor garbage collection policy could
quickly wear out some blocks and, thus, a flash memory chip.
A strategy called “wear-leveling” with the intention to erase
all blocks as evenly as possible is widely adopted to achieve
durability.

III. A CONFIGURABLE FLASH-MEMORY MANAGEMENT

SYSTEM

The configurability of performance and overheads in flash
management is explored from three different perspectives. In
Section A, a hash-based hot-data identification mechanism
with scalability considerations on precision and memory-space
overheads is presented to provide a highly efficient on-line
spatial-locality analysis. In Section B, an adaptive striping
mechanism with consideration of garbage collection is pre-
sented. The goal is to boost the system performance with
better parallelism in executing operations, where issues of the
capacity utilization and the wear leveling of each bank be-
come important. An efficient scheme with variable granular-
ity is presented in Section C. It aims at the reduction in the
main-memory footprint and the improvement on system per-
formance for large-scale flash-memory management. The re-
sults of this section are based on the work in [4, 5, 12].



A. Efficient On-Line Hot-Data Identification

The identification of hot data could significantly affect the
performance of garbage collection and wear-leveling, because
any recycling of a block with lots of live-and-hot data would
be relatively inefficient, and hot data could wear blocks out
faster than non-hot data do. When large-scale flash memory is
considered, many previous approaches introduce either consid-
erable memory/processor overheads or poor accuracy in iden-
tifying hot data. In this section, an on-line hot-data identi-
fication mechanism is presented to efficiently and accurately
capture run-time spatial locality with reduced requirements of
memory-space and processor time [12].

A.1 A Multi-Hash-Function Framework

The proposed framework adopts K independent hash functions
to hash a given LBA into multiple entries of a M -entry hash
table to track the write number of the LBA, where each entry is
associated with a counter of C bits. Whenever a write is issued
to the FTL, the corresponding LBA is hashed simultaneously
by K given hash functions. Each counter corresponding to the
K hashed values (in the hash table) is incremented by one to
reflect the fact that the LBA is written again. Note that we
do not increase any counter for a read because there is no in-
validation of any page for a read. Whenever an LBA needs
to be verified to see if it is associated with hot data, the LBA
is hashed simultaneously and in the same way by the K hash
functions. The data addressed by the given LBA is considered
as hot data if the H most significant bits of every counter of
the K hashed values contain a non-zero bit value.

Fig. 2.(a) shows the increment of the counters that corre-
spond to the hashed values of K hash functions for a given
LBA, where there are four given independent hash functions,
and each counter is of four bits. Fig. 2.(b) shows the hot-data
identification of an LBA, where only the first two most signif-
icant bits of each counter is considered to verify whether the
LBA corresponds to hot data. The rationale behind the adopt-
ing of K independent hash functions is to reduce the chance
for the false identification of hot data. Because hashing tends
to randomly maps a large address space into a small one, it
is possible to falsely identify a given LBA as a location for
hot data. With multiple hash functions adopted in the pro-
posed framework, the chance of false identification might be
reduced. In addition to this idea, the adopting of multiple inde-
pendent hash functions also helps in the reducing of the hash
table space, as indicated by Bloom [3].

For every given number of sectors that have been written,
called the “decay period” of the write numbers, the values of
all counters are divided by 2 in terms of a right shifting of
their bits. It is an aging mechanism to exponentially decay the
values of all write numbers as time goes on.
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Fig. 2. The Counter Updating and the Hot-Data Identification of an LBA,
where C = 4, K = 4, and H = 2.

A.2 Implementation Strategies

Instead of enlarging the hash table to improve false identifica-
tion, it is proposed to increase only counters of the K hashed
values that have the minimum value to improve false identifi-
cation. The rationale behind the counter-increment policy is as
follows: The reason for false identification is because counters
of the K hash values of a non-hot LBA are also increased by
other data writes, due to hashing collision. If an LBA is for
hot data, then the policy in the increasing of small counters for
its writes would still let all of the K counters corresponding
to the LBA go over 2(C−H) (because other writes would make
up the loss in counter increasing). However, if an LBA is for
non-hot data, then the policy would reduce the chance of false
identification because a less number of counters will be falsely
increased due to collision. The revised policy in counter in-
creasing would introduce extra time complexity in the hot-data
verification of each LBA because of the locating of counters
with the minimum value. The revised policy would certainly
increase the implementation difficulty of the algorithm with a
certain degree, regardless of whether this algorithm is imple-
mented in software, firmware, or even hardware. The perfor-
mance improvement, compared to the basic framework pro-
posed in Section A.1, will later be shown in the experiments.

B. An Adaptive Striping Architecture

In this section, we present a striping architecture to intro-
duce I/O parallelism to flash-memory storage systems based
on the work in [4]. An adaptive bank assignment method is
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presented to improve the system overheads on garbage col-
lection. We must point out that although people always be-
lieve performance improvement in the application of the strip-
ing technology, little work has been done in the exploring of
system behaviors on striping for flash-memory management,
such as bank capacity utilization and garbage collection. There
does exist a tradeoff between the striping level (and perfor-
mance) and the garbage-collection overheads in system de-
signs in many cases.

B.1 Multi-Bank Address Translation

In order to provide transparent data access, a dynamic address
translation mechanism is usually adopted in the FTL driver.
The dynamic address translation is accomplished by using an
address translation table in main memory, e.g., [8, 11, 13, 19].
In a typical multi-bank storage system, each entry in the ta-
ble could be a triple (bank num, block num, page num), in-
dexed by LBA. Such a triple indicates that the corresponding
logical block resides at Page page num of Block block num
of Bank bank num. In a typical NAND flash memory, a page
consists of a user area and a spare area, where the user area is
for the storage of a logical block, and the spare area stores the
corresponding LBA, ECC, and other information. The status of
a page can be either “live”, “dead”, or “free” (i.e., “available”).
Whenever a write is processed, the FTL driver first finds a free
page and then writes the written data and the corresponding
LBA to the user area and the spare area, respectively. The
address translation table is updated accordingly. Whenever a
system is powered up, the address translation table is re-built
by scanning the spare area of all pages. As an example shown
in Fig. 3, when a logical block with LBA 3 is accessed, the
corresponding table entry (0,0,6) shows that the logical block
resides at the 7th page (i.e., (6+1)th page) of the first block on
the first bank.

B.2 Bank Assignment Policies

Three kinds of operations are supported on flash memory:
read, write, and erase. Reads and erases do not need any bank
assignment because they are already stored in specific loca-
tions. Writes would need a proper bank assignment policy to
utilize the parallelism of multiple banks. When the FTL driver
receives a write request, it will break the write into a number of
page writes. There are two types of striping for write requests:
static and dynamic striping.

Under the static striping, the bank number of each page write
is derived based on the corresponding LBA of the page as fol-
lows, where the definition of RAID-0 is adopted as an example
design: Bank address = LBA % (number of banks). Each
sizable write is striped across banks “evenly”. However, we
must point out that a static bank assignment policy could not
provide even usages of banks in many real cases. A system
that adopts a static bank assignment policy might suffer from
a large number of data copyings (and thus a degraded perfor-
mance level) and different wearing-out time for banks because
of the characteristics of flash. The phenomenon is caused by
two reasons: (1) the locality of write requests, and (2) an un-
even capacity utilization distribution over banks.

Note that an uneven utilization distribution would result in
not only different capacity utilizations of banks but also signif-
icant degradation of the wear-leveling effects over banks. As a
result, multi-bank flash memory might be worn out much faster
than single-bank flash memory. It is because a static bank as-
signment policy always dispatches write requests to their stat-
ically assigned banks. Some banks might have more hot data
than others do. Since hot data are invalidated very often and
result in many dead pages on their residing banks, their resid-
ing banks must do garbage collecting frequently. On the other
hand, the banks which have more non-hot data might have
a high capacity utilization, since non-hot data would stay on
their banks for a longer period of time. Due to the uneven ca-
pacity distribution among banks, the performance of garbage
collection on each bank might vary widely since the system
performance also highly depends on the capacity utilization
[10, 15].

To resolve the above issue, a dynamic bank assignment pol-
icy is presented: When a write request is received by the FTL
driver, we propose to scatter page writes of the write request
over banks which are idle and have free pages. The parallelism
of multiple banks is achieved by switching over banks with-
out having to wait for the completion of issued page-writes.
The general mechanism is to choose an idle bank that has free
pages to store the written data. One important guideline is to
further achieve the “fairness” of bank usages by analyzing the
attributes (hot or non-hot) of the written data:

Before a page write is assigned a bank address, the attributes
of the written data must be identified. We propose to write hot
data to the bank that has the smallest erase-count (which is the
number of erases ever performed on the bank) for the consider-



ation of wear-leveling, since hot data will contribute more live
page copyings and erases to the bank. The strategy in writing
hot data prevents hot data from clustering on some particular
banks. On the other hand, non-hot data are written to the bank
that has the lowest capacity utilization to achieve a more even
capacity utilization over banks. The strategy in writing non-hot
data intends to achieve a more even capacity utilization distri-
bution since non-hot data will reside at their written locations
for a longer period of time. Because flash memory manage-
ment already adopts a dynamic address translation scheme, it
is intuitive to implement a dynamic bank assignment policy in
FTL. In Section 4, we shall present some experimental results
on the performance improvement based on striping and its re-
lationship to garbage collection/capacity utilization.

C. A Management Scheme for Large-Scale Flash

The purpose of this research is on the minimization of
the main-memory footprint and the amount of house-keeping
data written for flash-memory management. The objective
is to design a highly efficient large-scale flash-memory stor-
age system with small overheads on main-memory usages.
While many previously proposed flash-memory management
schemes adopt one or few fixed granularity sizes for both space
management and address translation, this section presents a
buddy-system-based tree structure and an extendable-hash-
based table for available and used space management of flash-
memory, respectively [5].

C.1 Space Management

A physical cluster (PC) is defined as a set of contiguous pages
on flash memory. The corresponding data structure for each
PC is stored in the main memory. The status of a PC could
be a combination of (free/live) and (clean/dirty). A free PC
simply means that the PC is available for allocation, and a live
PC is occupied by valid data. A dirty PC is a PC that might
be involved in garbage collection for block recycling, where a
clean PC does not. In other words, An LCPC, an FCPC, and
an FDPC are a set of contiguous live pages, free pages, and
dead pages, respectively. Similar to LCPC’s, an LDPC is a set
of contiguous live pages, but it could be involved in garbage
collection.

The handling of PC’s is close to the manipulation of mem-
ory chunks in a buddy system, where each PC is considered as
a leaf node of a buddy tree. PC’s in different levels of a buddy
tree correspond to PC’s with different sizes (in a power of 2).
A tree structure of PC’s is maintained in the main memory.
The initial tree structure is a hierarchical structure of FCPC’s
based on their LBA’s. In the tree structure all internal nodes
are initially marked with CLEAN MARK. On the splitting of
an FCPC and a live PC (LCPC/LDPC) the internal nodes gen-
erated are marked with CLEAN MARK and DIRTY MARK,
respectively. When a write request arrives, the system will lo-
cate an FCPC with a sufficiently large size. If the allocated

FCPC is larger than the requested size, then the FCPC will be
split until an FCPC with the requested size is acquired. New
data will be written to the resulted FCPC (i.e., the one with the
requested size), and the FCPC becomes an LCPC. Because of
the data updates, the old version of the data should be invali-
dated.

Garbage collection could be done based on the concept of
PC: Consider the results of a partial invalidation on an 128KB
LCPC (in the shadowed region) in Fig. 4. Let the partial inval-
idation generate internal nodes marked with DIRTY MARK.
Note that the statuses of pages covered by the subtree with
a DIRTY MARK root have not been updated on flash mem-
ory. A subtree is considered dirty if its root is marked with
DIRTY MARK. The subtree in the shadowed region in Fig. 4
is a proper dirty subtree, and the flash-memory address space
covered by the proper dirty subtree is 128KB. The proper dirty
subtree of an FDPC is the largest dirty subtree that covers all
pages of the FDPC.
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Fig. 4. A Proper Dirty Subtree with Two FDPC’s and One LDPC.

There are three cases for space allocation when a new re-
quest arrives: The priority for allocation is on Case 1 and then
Case 2. Case 3 will be the last choice.

Case 1: There exists an FCPC that can accommodate the
request. The searching of such an FCPC could be done by a
best-fit algorithm. That is to find an FCPC with a size closest
to the requested size. Note that an FCPC consists of 2i pages,
where 0 ≤ i. If the selected FCPC is much larger than the
request size, then the FCFC could be split according to the
mechanism just presented in this Section.

Case 2: There exists an FDPC that can accommodate the re-
quest. The searching of a proper FDPC is based on the weight
function value of PC’s. We shall choose the FDPC with the
largest function value, where any tie-breaking could be done
arbitrarily.

Case 3: Otherwise. (That is no single type of PC’s that
could accommodate the request.) To handle such a situation,
we should “merge” FCPC’s and FDPC’s repeatedly until an
FCPC that can accommodate the request size appears.
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Fig. 5. Example Layout of a Hash Table for Logical-to-Physical Address
Translation.

C.2 Logical-to-Physical Address Translation

The space management unit for the proposed approach is a
physical cluster (PC), instead of a page. A main-memory-
resident hash table is proposed, where each hash entry is a
chain of tuples for collision resolution. Each tuple (starting
logical address, starting physical address, the number of pages)
represents a logical chunk (LC) of pages in consecutive loca-
tions, and the number of pages in an LC does not need to be a
power of 2.

The logical address space of flash memory is first exclu-
sively partitioned into equal-sized regions referred to as logical
regions (LR’s). Suppose that the total logical address space is
from page number 0 to page number 2n − 1, and each LR is
of 2m pages. A dynamic-hashing-based method could be used
as follows: Initially we have a directory which is a static array
with 2n−m entries, where one entry points to one bucket. Each
LC is an LR in the beginning, and all LC’s are hashed into the
hash table, as shown in Fig. 5.(a). The hash function is defined
as the first (n − m) bits of a given logical address. When a
bucket is overflowed, it is split into two buckets, and all of the
LC’s in the old bucket are distributed among the two bucket
based on their corresponding logical addresses, as shown in
Fig. 5.(b). Note that LC’s in the hash table could also be split
and merged to reflect the new logical addresses of a piece of
data when invalidations and/or garbage collection occur.

IV. PERFORMANCE EVALUATION

A series of simulations was conducted to evaluate the ca-
pability of the proposed flash-memory management schemes.
The trace of data access for performance evaluation was col-
lected over a mobile PC with a 20GB hard disk, 384MB RAM,
and an Intel Pentium-III 800MHz processor. The operating
system was Windows XP, and the hard disk was formatted as
NTFS.

A. Hot-Data Identification

Fig. 6 shows the ratio of false hot-data identification for the
multi-hash-function framework (denoted as basic in the fig-
ure) and the framework with an enhanced counter update pol-
icy (denoted as enhanced in the figure), compared to the direct
address method (that denoted an optimal method). Let X be
the number of LBA’s being identified as non-hot data by the di-
rect address method but being identified as hot data by the (ba-
sic/enhanced) multi-hash-function framework for every 5117
writes. Y was 5117. The ratio of false hot-data identification
for the (basic/enhanced) multi-hash-function framework was
defined as (X/Y ). As shown in Fig. 6, the enhanced multi-
hash-function framework outperformed the basic multi-hash-
function framework. When the hash table size reached 2KB,
the performance of the (basic/enhanced) multi-hash-function
framework was very close to that of the direct address method.

The Number of Write Requests So Far (unit: 5117 writes)
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Fig. 6. Ratio of False Identification for Various Hash-Table Sizes.

Fig. 7 shows the performance gap achieved by the frame-
work and the direct address method, when the decay period
ranged from twice of the original setup to a quarter of the orig-
inal setup. It was shown that the performance of the multi-
hash-function framework was close to that of the direct address
method when the decay period was about 1.25 of the original
setup, i.e., a decay per 6396 writes. We should also point out
that when the decay period was too large, the chance of false
hot-data identification might increase more than expected be-
cause the results of “incorrect”counter increments would be
accumulated. If we had to set the decay period as a unreason-
ably large number, then we should have a large hash table!

B. An Adaptive Striping Architecture

Fig. 8 shows the average response time of writes under var-
ious numbers of banks of an 8MB-flash storage system. The
X-axis reflects the number of write requests processed so far
in the experiments. The system performance was substantially
improved when the number of banks increased from one to two
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because of more parallelism in processing operations. How-
ever, when the number of banks increased from two to four, the
improvement was not so significant. One reason behind the ob-
servation was because Wsetup was larger than Wbusy . Another
major reason behind the observation was because a larger num-
ber of banks mean a smaller capacity for each bank, where the
total flash memory capacity was assumed being 8MB. Since
the page size was fixed for all configurations in the experiment,
a smaller capacity for a bank mean a relatively larger access
unit, i.e., the page size, to a bank. As a result, garbage collec-
tion cost would be higher for a small bank, compared to a large
bank. When the number of banks increased from two to four,
the improvement due to striping was offset by the increased
garbage collection overheads. Note that the garbage collection
started happening after 3,200 write requests were processed in
the experiments (due to the exhaustion of free pages). As a re-
sult, there was a significant performance degradation after the
garbage collection activities began.

C. A Management Scheme for Large-Scale Flash

With a 20GB flash-memory storage system, a fixed-
granularity scheme and the proposed variable-granularity
scheme were evaluated over the multimedia data access pat-
terns, as shown in TABLE I. The Fixed Scheme denotes the
fixed-granularity scheme (with a granularity size provided),
and the Flexible Scheme denotes the proposed variable-
granularity scheme. The total number of pages actually writ-
ten by the clients of the storage system was 41,943,168 pages.
The proposed variable-granularity scheme reduces both the
memory usage and the number of pages written in the experi-
ments, and was proven being significantly better than the fixed-
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Fig. 8. Average Response Time of Writes under Different Bank
Configurations.

granularity scheme.

Scheme Footprint Size Pages Written
Fixed Scheme, (1 page) 321MB 41,943,168
Fixed Scheme, (1 block) 10MB 52,106,912

Flexible Scheme 3.18MB 41,943,168

TABLE I
RESULTS OF EVALUATED SCHEMES UNDER THE MULTIMEDIA DATA

ACCESS PATTERNS.

Figure 9 evaluates overheads imposed on the fixed scheme
and the flexible scheme due to power-up initialization, where
the X-axis denoted the granularity sizes in pages (for the fixed
scheme), and the Y-axis denoted the time needed to completely
initialize RAM-resident data structures. The space utilization
was fixed at 96%. Under the fixed scheme, intuitively, when
the granularity size was a 512B, a very long initialization time
was observed (i.e., 1,342 seconds or 33,554,432 spare area
reads). That was because every spare area of the entire flash
memory needed to be scanned. On the other hand, with a 16KB
granularity, it became significantly faster (i.e., 41 seconds or
1,048,576 spare area reads) because only the space area of the
first page of every block needed to be scanned. Regarding the
flexible scheme, since a significant portion of the entire flash-
memory space could be managed by large PC’s and only the
spare area of the first page of a PC needed to be fetched, the
flexible scheme took only 17 seconds (i.e., 434,111 reads of
spare areas) for its initialization.

V. CONCLUSION

As high-capacity flash memory becomes much more af-
fordable than ever, many existing flash-memory management
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methods might face serious overhead problems. In this pa-
per, novel frameworks are presented to offer the flexibility in
tuning up the system performance with overheads. The con-
figurability in flash-memory management is considered from
three aspects: (1) We present a highly efficient hash-based
method to identify hot data effectively with limited memory-
space overheads. The effectiveness of hot-data identification
was shown with different memory-space overheads. (2) An
adaptive striping mechanism is presented for multi-bank flash
memory. Striping issues were explored with respect to sys-
tem performance, bank utilization and garbage collection over-
heads. (3) A flash memory scheme with variable granularities
is presented to minimize the number of pages written to the
flash memory and the memory-space overheads. A series of
experiments was conduced to demonstrate the trade-off be-
tween performance and overheads. For future research, we
shall further address the reliability issues in flash management,
with respect to the system performance.
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