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Abstract— In this paper, we propose a new frame-
work to synthesize rapid single flux quantum (RSFQ)
logic circuits. In our framework, we construct a vir-
tual cell, which we call “2-AND/XOR,” from the
RSFQ logic primitives. By using 2-AND/XOR cells,
we can successfully adopt the conventional logic de-
sign techniques into our framework, and thus we can
successfully generate RSFQ circuits in reasonable time
even for large benchmark circuits that have not been
reported in the existing researches.

I. INTRODUCTION

Rapid single flux quantum (RSFQ) integrated circuits
composed of Josephson-junction devices have been inten-
sively studied because of their potentially high perfor-
mance with high clock frequency and extremely low power
consumption [7]. RSFQ technology has the following fea-
tures [7].

e Ultrafast digital signals can be passed along the chips
ballistically with a propagation speed approaching
that of light.

e Intrinsic switching time of the Josephson junction is
also very short, typically a few picoseconds.

e The power dissipated by a Josephson junction is typi-
cally below one microwatt. Hence, the problem of re-
moval of heat is quite solvable. Currently this is not
essentially true since we need some cooling system for
the whole RSFQ circuits themselves. Although spe-
cial cooling systems cannot be used for a consumer
PCs, we may be able to afford special cooling de-
vices for high-end computing servers. Also, at this
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moment, we cannot deny the possibility that we can
construct ultra low power systems by RSFQ technol-
ogy in the future.

e The Josephson junction fabrication technologies are
considerably simpler than those of the conventional
semiconductor (both Si and GaAs) transistors with
similar design rules.

Although it currently requires a refrigeration technique,
such as liquid-helium cooling, the benefits of RSFQ tech-
nology would become huge in the near future.

As the current CMOS technology is approaching “Red
Brick Wall” [1], the RSFQ technology is considered as one
of the promising next generation technologies. Indeed, the
RSFQ device is listed as one of the most promising ones in
the “Emerging Research Devices” list by ITRS [1]. Actu-
ally RSFQ digital circuits containing several thousands of
Josephson junctions have been successfully implemented
and their high performance has been confirmed [12].

Although it still appears quite challenging to realize
primitive RSFQ logic cells efficiently, it is also a challenge
to establish systematic logic design methods for large
RSFQ circuits. The reason is that the logic primitives
in RSFQ circuits are very much different from those in
the conventional CMOS technology, and thus we cannot
directly utilize the conventional logic design techniques.
Therefore, we also need to do researches for the logic de-
sign methodologies for RSFQ logic circuits.

Among the researches for logic design methods for
RSFQ circuits, the cell-based methods [6, 16, 17] have
been studied like conventional CMOS technology. In
their methods, a logic primitive called “RSFQ D, flip-
flop” is used to replace a node of BDD (Binary Decision
Diagram) [2]. Recently a systematic design method [9]
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Fig. 1. SPL. Fig. 2. CB. Fig. 3. 2x2-Join.

has been proposed to use another primitive called “2x2-
Join” [5]. The method is also based on BDDs. For small
circuits, BDD-based methods may generate good circuits.
However, it is obvious that BDD-based methods such
as [9] cannot be applied directly to large circuits since
their manipulation of BDDs essentially takes a lot of time
for the large functions. Thus it is desirable to have an-
other approach that can be applied to large circuits.

For that purpose we propose a framework that is not
based on the BDD manipulation. Our framework con-
sists of two phases which are very much alike to the con-
ventional logic design methodologies for AND/OR/NOT
gates. At first phase, we generate initial circuits consisting
of two-input nodes by using any conventional techniques.
A two-input node is transformed to a virtual logic cell
called 2-AND/XOR cell which is introduced in this pa-
per. Then, at the second phase, we optimize the circuit
by using a transformation-based heuristic method like the
conventional logic design. For that, we modify the orig-
inal Transduction Method [8] to be suitable for the 2-
AND/XOR cells.

A 2-AND/XOR cell exploits the property of a 2x2-
Join fully, i.e., it can represent all the possible functions
realized by a 2x2-Join. More importantly, by consider-
ing logic circuits consisting of 2-AND/XOR cells, we are
able to adopt the conventional logic design techniques
for RSFQ circuit design. Indeed our method can han-
dle large circuits that have not been reported in existing
researches [9]. Accordingly, our framework can be com-
plementarity to the existing BDD-based methods. Also
it would be possible to construct an efficient logic de-
sign system from the combination of our method and the
above-mentioned BDD-based methods [6, 16, 17, 9].

This paper is organized as follows. In Sec. I, we provide
minimum information to understand the contents of this
paper. Then, Sec. III is devoted to explain our proposed
logic design framework. We show some experimental re-
sults to demonstrate the effectiveness of our method in
Sec. IV, and discuss the comparison between our method
and related work in Sec. V. Finally, we conclude the paper
in Sec. VL.

II. PRELIMINARIES

A. RSFQ Logic Primitives

In this paper, we consider a design framework of RSFQ
logic circuits. In an RSFQ circuit, single flux quan-
tum (SFQ) pulses are used for representing logic values.
Pulses are generated and propagated by the combina-
tion of super-conducting rings with Josephson junctions.
There has been proposed many logic primitives to ma-
nipulate pulses in RSFQ circuit in logic level. Among
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TABLE 1
2X2-JOIN PULSE OPERATION
Inputs Outputs
A Ay B, By 00 01 10 11

Pulse | No | Pulse [ No No No No [ Pulse

Pulse | No No [ Pulse No No | Pulse [ No
No [ Pulse | Pulse | No No [ Pulse | No No
No [ Pulse | No | Pulse | Pulse [ No No No

them, in this paper, we use the following three logic prim-
itives [5, 7).

SPL (Splitter) This logic primitive generates two
pulses from a single pulse. We express this primi-
tive as a black circle as shown in Fig. 1.

CB (Confluence Buffer) This logic primitive gener-
ates a single pulse when two input pulses arrive. (The
two input pulses are not allowed to arrive at the very
same time.) We express this primitive as a white
circle as shown in Fig. 2.

2x2-Join 2x2-Join has four inputs and four outputs as
shown in Fig. 3, and it generates one pulse at one
of the four outputs depending on the combination of
input pulses. The relationship between inputs and
outputs are described in Table I. For example, if it
receives two pulses at A; and By, then it generates a
pulse at the output 11. Note that the output pulse
is not dependent on the arrival order of the input
pulses.

B. Dual-Rail Logic Design

At the early times when researches for RSFQ circuit
started, a clock signal was used to translate a pulse on
a data line in a “clock window” as logic “1” and no
pulse as logic “0” like conventional synchronous circuit
design. The reason is that we need to specify the exact
time when a pulse comes, or otherwise we cannot distin-
guish between logic “0” and logic “1” while pulse has not
arrived yet. Therefore, unlike the conventional technolo-
gies, for RSFQ circuit logic design, careful delay estima-
tion and clock design are required [4] since an improper
arrival order of data and clock pulses leads to erroneous
data transfer. Facing the above-mentioned timing prob-
lems, the RSFQ technology has been paying an attention
to an asynchronous approach. More precisely, dual-rail
data encoding is used to enables clock free data trans-
fer [3]. In the dual-rail scheme, a pair of (true- and false-)
data lines carries 1-bit binary information. The propaga-
tion of a pulse on the true-line or the false-line represents
logic “17 and “0,” respectively. No race occurs because
only one pulse propagates either true- or false-line dur-
ing 1-bit data transfer. Therefore, for a large circuit, it
is indispensable to adopt dual-rail scheme, and thus, in
our framework we use dual-rail scheme; we use two lines
(true- line and false- line) to propagate 1-bit information
of an intermediate logic function as will be mentioned in
the next section.
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C. Transformation-based Optimization Methods

Since it is totally impossible to generate an optimal
logic circuit by one method (especially for a large prob-
lem), we iteratively apply optimization methods to trans-
form an initial circuit generated by some methods into a
smaller circuit. This strategy should also be important for
RSFQ circuit design. Thus, we utilize the Transduction
Method [8], which is one of such optimization methods,
in our framework for the same purpose. the Transduction
Method is based on the concept of permissible func-
tions (PFs). Intuitively, a permissible function at a gate
(or a connection) is a set of functions any one of which
can be used at the gate (or the connection) without chang-
ing the functionality of the circuit. A compatible set of
permissible functions (CSPFs) is defined as a set of PFs
that can be used independently on a set of gates (and/or
connections) without changing functionality. Originally
CSPFs were defined for NOR gates [8]. Later, they were
generalized to arbitrary Boolean nodes and called compat-
ible observability don’t cares (CODCs) [10]. CODCs dif-
fer also in that they are expressed in terms of intermediate
signals. CODCs are used in SIS [13], and transformation-
based optimization methods are widely used in many con-
ventional logic synthesis tools. We refer readers to [8] for
the details of the calculation of CSPFs and the transfor-
mation procedures.

III. THE PROPOSED FRAMEWORK TO DESIGN RSFQ
Logic CirculTrs

A. Overview of the Proposed Framework

As mentioned in the previous section, the logic primi-
tives for RSFQ logic circuits are different from the conven-
tional logic gates. Therefore, it is not possible to directly
apply the conventional logic design techniques for design-
ing RSFQ logic circuits. The difficulties are summarized
as follows.

e A CB works in a very similar way to a conventional
OR gate, but the two input pulses are not allowed
to arrive at the same time for a CB. Thus two in-
put functions, hy; and hs, to a CB should satisfy the
condition hq - hy = 0.

e A 2x2-Join works as generating a logic combination
with respect to its input pulses as shown in Table I.
However, the behavior of a 2x2-Join is not known
for the combination of input pulses that are not de-
scribed in the table (e.g., when a 2x2-Join receives
pulses at both A; and Af). Thus, A; and Ay (B
and By also) should be exactly the negation to each
other; we should always generate f as well if we want
to use f as an intermediate function.

By considering the above issues, we restrict ourselves
to design a logic circuit by using a virtual logic cell called
2-AND/XOR which will be mentioned below. As we will
see soon, using 2-AND/XOR cells solves the above issues
very naturally, and moreover, it utilizes almost all the
abilities of 2x2-Joins.

B. 2-AND/XOR Cell

Before introducing our 2-AND/XOR cells, let us con-
sider how to use 2x2-Joins to make logic functions. Sup-
pose we want to construct f with respect to two interme-
diate functions h; and hs. As we take dual-rail scheme,
we also assume that there are h; and hs. Then, we con-
nect hy, by, hy and hy to Ay, Ay, By and By, respectively,
of a 2x2-Join as shown in Fig. 4. Then the outputs of the
2x2-Join, 00, 01, 10 and 11 generate pulses corresponding
to the logic functions of (hy - hy), (h1 - hy), (hy - hy) and
(h1 - ha), respectively. They are the four minterms of hy
and ho, and thus, any function with respect to h; and
ho can be constructed by merging some of four outputs,
00, 01, 10 and 11, with CBs. We can also construct f
by merging the outputs of the 2x2-Join that are not used
for f. An example where f = h;y - hy is shown in Fig. 4.
To sum up, by using a 2x2-Join with two CBs, we can
construct any dual-rail logic function f (both f and f)
of two intermediate functions. Therefore, from the con-
ventional logic point of view, we can consider this 2-input
sub-circuit as a 2-input LUT (look-up table).

There is another usage of a 2x2-Join, i.e, we consider
making multiple functions from a single 2x2-Join. For
example, we can make AND and XOR functions of two
inputs by using a single 2x2-Join, three CBs and three
SPLs as shown in Fig. 5. Indeed, we can make all the
possible sixteen 2-input functions at the same time by
a single 2x2-Joins with many CBs and SPLs. However,
since we use dual-rail logic, we do not need to consider the
polarity of the inputs and the outputs of the functions,
and therefore, it is enough to consider the following five
functions with respect to inputs hy; and hy: f; = hy - h_g,
fg :hl'hg, f3 :hl 'hg, f4 :hl'hg and f5 :hl@hg.
(Note that we may want to implement some of these five
functions at the same time; we need to have four functions
for AND type functions at the same time.)

With the above discussions in mind, we introduce a
virtual logic cell called 2-AND/XOR that has two inputs,
h1 and hg, and five OlltplltS7 f1 = h_lh_21 fg = h_l'hg, f3 =
h1 . h_2, f4 = h1 . hg and f5 = hl D h2 as shown in Flg 6.
Obviously we can design a 2-AND/XOR cell by a single
2x2-Join, CBs and SPLs. This cell corresponds to all the
possible output functions that can be implemented by a
single 2x2-Join. Also we can always generate negations
of f1 to f5. It should also be noted that the usage of
CBs in a 2-AND/XOR cell satisfies the condition of CBs,
i.e., two input pulses do not arrive at the same time since
an output pulse is generated at only one of four outputs
of a 2x2-Join. Thus the problems mentioned in Sec. III-
A are naturally solved if we use only 2-AND/XOR cells
to design logic circuits. Moreover, a 2-AND/XOR cell
also naturally corresponds to a circuit consisting of the
conventional AND, XOR and NOT gates; we can utilize
the conventional logic design techniques.

C. Initial Circuits Synthesis

As mentioned in the previous section, a sub-circuit real-
izing any 2-input logic function can be naturally mapped
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Fig. 4. 2x2-Join Usage: Single Function.

to a 2-AND/XOR cell. Therefore, any logic circuit con-
sisting of only 2-input nodes can be mapped to a cir-
cuit consisting of only 2-AND/XOR cells. Thus, our logic
synthesis starts with a circuit consisting of only 2-input
nodes. This initial circuit can be generated by conven-
tional logic design tools, such as SIS (A System for Se-
quential Circuit Synthesis) [13]. For example, by using
a standard script of SIS, we can obtain a circuit consist-
ing of 2-input ANDs, 2-input XORs, and NOTs. Then,
we can map this circuit naturally into one consisting of
2-AND/XOR cells. Note that four of five outputs of each
2-AND/XOR cell is not used (i.e., redundant) at this mo-
ment, however, the redundant outputs are very useful in
our optimization procedure mentioned in the next section.

D. Transduction Method for 2-AND/XOR Circuits

After obtaining the initial circuit consisting of 2-
AND/XOR cells, we apply the following procedure where
we consider the whole circuit as just a conventional circuit
consisting of 2-input XORs, 2-input ANDs and NOTs.
However, while each AND or XOR gate is considered as a
single gate in the conventional Transduction Method, the
four AND gate and the XOR gate in a 2-AND/XOR cell
should be handled together as we will mention.

Step 1. Calculate CSPFs of all connections and gates in
the circuit.

Step 2. For an XOR gate, remove an input connection
of the gate if the CSPF at the connection contains
the constant-0 function. For an AND gate, remove
an input connection of the gate if the CSPF at the
connection contains the constant-1 function.

Step 3. If the function at a gate is included in the CSPF
at a connection, replace the connection with a new
connection from the gate.

We repeat the above transformation until there is no
change.

This scheme is exactly the same as that of the con-
ventional Transduction Method (See [8] for more details).
However, note that we can remove a 2-AND/XOR cell
only when all the four AND and the XOR outputs are re-
moved. Therefore, unlike the case of conventional circuit
optimization methods, it is not important to remove only
one of XOR and AND gates in a 2-AND/XOR cell. Thus,
we modify the conventional Transduction Method as fol-
lows. The modification is considered to be very natural
for 2-AND/XOR cells.

Fig. 5. 2x2-Join Usage: Multiple Functions.

Fig. 6. 22AND/XOR Cell.

e If there are multiple candidates for the alternative
connection at Step 3, we choose the output of 2-
AND/XOR whose total number of fanouts (i.e., the
number of fanouts of all the four AND and the XOR
outputs) is the largest. In contrast, in the conven-
tional Transduction Method, we consider only the
number of fanouts of the gate that is chosen as a
replacement. This means that if we take the conven-
tional strategy, we always consider only one of AND
or XOR outputs in 2-AND/XOR cells, and there-
fore, we may miss a chance to remove a whole 2-
AND/XOR cell even though we can remove one of
its output gate.

e At Step 3, to select a candidate function, if there is
a gate whose output function is f, we can also use f
since we use dual-rail logic.

e At Step 2, we remove an AND (or XOR) gate only
when all the four AND and the XOR gates in the
2-AND/XOR cell become redundant. By this modi-
fication, we can continue to have a possibility to use
AND (or XOR) function to replace another connec-
tion even though it is currently not used.

It is very interesting to note that any functional redun-
dancy cannot be obtained if we apply the CSPF calcula-
tion directly to circuits consisting of 2x2-Joins and CBs
because of their difference from the conventional gates
described in Sec. III-A. In other words, we can success-
fully utilize the Transduction Method by introducing 2-
AND/XOR cells and considering the whole circuit as just
a conventional circuit consisting of 2-input XORs, 2-input
ANDs and NOTs. This enable us to optimize RSFQ cir-
cuits more as we will see in our experimental results in
Sec. IV.

As we mentioned in Sec. III-B, we can consider the
logic primitives as 2-input LUTs that can be constructed
as shown in Fig. 4. For a logic circuit consisting of LUTs,
there is an efficient optimization method that utilizes
SPFD [14]. (SPFD is a generalization of CSPF to the case
of LUTs where we can utilize the flexibility of LUTs, i.e.,
we can change the internal functions of LUTs.) There-
fore, one might wonder if the following strategy is more
natural and better than our strategy.

e Consider the logic primitives as 2-input LUTs which
can be constructed as shown in Fig. 4.

e Apply SPFD-based optimization method [14].

269

>



3A-5

It should be noted that the above strategy is essen-
tially the same as the ours since it is sufficient to con-
sider AND and XOR for 2-input functions when we use
dual-rail logic. In other words, our strategy to use 2-
AND/XOR cell essentially has the same power as the one
that uses SPFDs. Therefore, for our problem, we do not
need to calculate and manipulate SPFDs that are more
complicated than CSPFs.

E. Optimality of Our Framework

Our framework successfully utilizes the conventional
logic design techniques by considering virtual cells called
2-AND/XOR cells in stead of considering directly 2x2-
Joins, CBs and SPLs. Then, one may wonder how much
we may miss the possibility to have a smaller circuit com-
pared to the case where we design a circuit directly from
2x2-Joins, CBs and SPLs. As mentioned, as far as we
consider a function realized by only a single 2x2-Join with
SPLs and CBs, we do not miss the opportunity to have
a small circuit, i.e., our 2-AND/XOR cell essentially rep-
resents all the possible functions realized by ORing any
combination of the four outputs of a single 2x2-Join, i.e.,
any function with respect to two inputs of the cell.

However, we cannot generate a logic function realized
by ORing two functions from two different 2x2-Joins.
Suppose h; and hy be the functions realized at the out-
puts of two different 2x2-Joins. Then, if h; - hy = 0 is
satisfied we can make f = hy + hy by only a single CB.
Obviously our framework cannot deal with the above us-
age of CBs. It should be noted that such a situation does
not happen so frequently by the following reason. Since
we take dual-rail scheme, if we generate f = hy + hs, we
also need to generate f, i.e., we need to have hg and hy
such that hs - hy = 0 and hs + hy = 7 Thus, we need to
find hs and hy with the above difficult conditions when
we want to generate OR functions of h; and h, with a
CB; there are not so many such situations. Therefore,
missing the above usage of CBs may be allowed if we con-
sider the advantage of our framework, i.e., we can adopt
conventional logic design techniques.

One may also consider that our usage of 2x2-Joins
seems to increase the number of CBs and SPLs since
we use a lot of CBs and SPLs to generate multiple out-
puts from a single 2x2-Join in a 2-AND/XOR cell. (See
Fig. 5 again.) However, we would like to stress that the
number of CBs and SPLs are not increased, or even de-
creased in many cases. The reason is as follows. Consider
a case when we want to generate the two functions, f
and g, which are shown in Fig. 5. If we do not use our 2-
AND/XOR cells, i.e., just use two 2x2-Joins to implement
two functions separately, the situation can be expressed
as shown in Fig. 7. Note that we need four SPLs before
two 2x2-Joins. Thus, by comparing Fig. 5 and Fig. 7, one
can easily see that our usage of 2x2-Joins decreases the
number of not only 2x2-Joins but also CBs and SPLs. (In
this example, we can decrease the number of CBs since f
and g share a common minterm.)
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Fig. 7. Two 2x2-Joins without
Sharing.

IV. EXPERIMENTAL RESULTS

We have implemented the
in the previous sections
inary  experiments on MCNC [15] benchmark
circuits. To synthesize initial circuits we used
the following recommended script of SIS [13].

(1) eliminate 2, (2) gkx -ac, (3) simplify -d,

(4) xl_part_coll -m -g 2 (5) xl_coll_ck,

(6) xl_partition -m, (7) simplify.

Table II shows the results of our optimization proce-
dure described in Sec. ITI-D. In Table II, “Join,” “Conn.”
and “Lev.” show the number of 2x2-Joins, the number of
connections between them and the level (depth) of the cir-
cuits, respectively, and “Time” shows optimization time
our method took in these experiments. In the lowest row,
with respect to the number of 2x2-Joins, the number of
connections and the circuit level, we show the ratio to the
initial circuits, and with respect to the optimization time,
we show the average of those for the benchmark circuits.
Here we consider only the number of 2x2-Joins like the
existing researches by observing that the implementation
cost of 2x2-Joins will be much larger than those of the
other primitives although it is a little bit early to discuss
the real implementation costs. It should also be noted
that the numbers of CBs and SPLs are also decreased if
we can decrease the number of 2x2-Joins as mentioned in
Sec. ITI-E. In Table II, we can observe that our optimiza-
tion method reduced the number of 2x2-Joins, the num-
ber of connections and the circuit level by 32.0%, 31.8%
and 17.3%, respectively, while our optimization procedure
took 6.08 seconds on average.

We consider that this large reduction is due to the
change from the single-output LUT to the multi-output
2-AND/XOR composed of a 2x2-Join, SPLs and CBs. It
is apparent that two 2-AND/XOR cells can be merged
into one if their inputs are from the same 2-AND/XOR
cells. Otherwise, we cannot determine whether they can
be merged or not by only observing the circuit configura-
tion. Our method can find more cases where we can merge
2-AND/XOR cells by using CSPFs. This feature makes
our optimization method more powerful. The number of
such mergers are reported in “Share” in Table II, and the
ratio to the total number of the 2x2-Joins is in (%).

As the case of conventional logic synthesis, the logic
optimization should be also very important for the RSFQ

methods presented
and performed prelim-
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TABLE 11
EXPERIMENTAL RESULTS

Initial Circuits Trans.

Circuits PI | PO |[ Join [ Conn. | Lev. || Join | Conn. | Lev. | Time (s) || Shared | (%)
C1355 41 32 234 468 17 174 348 14 1.17 6 3.4
C7552 207 | 108 || 1504 3059 32 994 2049 32 122.14 136 | 13.7
alu2 10 6 386 773 42 236 473 28 3.35 41 | 17.3
alud 14 8 667 1334 43 479 958 36 11.26 84 | 17.5
cmb 16 4 44 88 6 25 51 b) 0.01 4 | 16.0
dalu 75 16 || 1172 2344 36 809 1618 18 36.59 84 | 10.4
f51m 8 8 113 227 10 64 129 9 0.11 10 | 15.6

i8 133 81 || 1260 2520 19 971 1942 15 155.37 127 | 13.1
lal 26 19 88 177 8 61 123 8 0.06 71115

my_adder 33 17 96 192 48 64 128 48 0.08 16 | 25.0
1481 16 1 || 1690 3380 20 || 1073 2146 19 110.66 57 5.3
term1 34 10 259 519 16 116 234 11 0.68 15 | 12.9
ttt2 24 21 182 364 10 127 254 10 0.41 19 | 15.0

x3 135 99 724 1448 14 548 1096 12 14.19 41 7.5
z4ml 7 4 44 88 9 12 25 8 0.01 6 | 50.0
| Average [ 100] 100] 100] 680] 682] 827 608 ] [11.4 |

logic circuit design since it is difficult to design optimum
RSFQ circuits directly from the specifications. From this
viewpoint, our optimization method might be useful in
the second step of any circuit synthesis method for RSFQ
logic circuits. Moreover, although the conventional map-
ping tools mainly produce single-output LUT circuits,
our method can transform them into multi-output 2-
AND/XOR circuits. Therefore, by taking the advantage
of the multi-output feature, our method can optimize the
2-input circuit mapped by SIS as the experimental results
show.

V. COMPARISON WITH RELATED WORKS

To the best of our knowledge, there are only two re-
searches [16] and [9] for systematic methodology to design
RSFQ logic circuits. Both of them are based on BDDs.
Unlike our framework, they directly consider RSFQ logic
primitives, Bina [16] or 2x2-Joins [9]. Although the pa-
per [16] does not provide any results of benchmark cir-
cuits, it seems that the method proposed in [9] is more
promising as they claim in [9].

Although we do not have comparison data, we can ob-
serve the disadvantages of the BDD-based methods as fol-
lows:

e BDD-based methods need relatively large time (com-
pared with conventional logic synthesis techniques
used in our framework) to manipulate the BDDs in
a special manner.

e BDD-based methods need to consider BDD variable
ordering and/or the division of functions if necessary,
and the variable ordering should have a great influ-
ence on the resultant circuits.

e The level of the generated circuits is essentially the

same as the number of inputs of the functions to be
synthesized if we use the BDD-based methods.

Note that it is well-known that, for some functions, it
is much better to use functional decomposition based on
BDDs [11] than to use conventional logic design tech-
niques, such as SIS. Thus, it might be true that the BDD-
based methods should produce better circuits than our
method especially for small circuits. However, it is also
obvious that for some cases our method may be better.
It is also true that our method can be applied for larger
circuits to which BDD-based methods are not feasible. In
conclusion, our method is complementarity to the existing
BDD-based methods.

The obvious advantages of the method [9] over our
method is the following. Our method cannot find the
special usage of CBs as mentioned in Sec. III-E. On the
other hand, the method [9] sometimes extracts the spe-
cial usage of CBs from their BDD representation since
the method constructs circuits directly from RSFQ logic
primitives. As we mentioned, by ignoring this special us-
age of CBs, we can successfully utilize the conventional
logic techniques in our framework. Note also that the
optimization phase in our framework can handle this spe-
cial CBs by treating them as OR gates with some special
conditions. Thus, it is easy to modify our Transduction
Method so that it can be applied to the circuit obtained
by the method [9]. Such modifications and further com-
parison with the BDD-based methods should be done as
our future work.

VI. CONCLUSIONS

In this paper, we have presented a new framework
to synthesize RSFQ logic circuits from 2x2-Joins. Our
method can utilize conventional logic design techniques.
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Indeed we show how to use logic synthesis tools such

as SIS [13] and a transformation-based heuristic method

based on the Transduction Method [8] in our framework.
Our contributions are summarized as follows.

e We propose a framework to use a 2x2-Join as a 2-
AND/XOR cell for RSFQ logic circuit synthesis. By
this we can utilize the conventional logic synthesis
techniques including initial circuit design and opti-
mization methods.

e We propose an optimization method by modifying
the original Transduction Method so that it can uti-
lize the property of 2-AND/XOR cells.

e By using our framework, we can successfully generate
RSFQ circuits in reasonable time for large benchmark
circuits that have not been reported in the existing
researches.

The experimental results show that our Transduction
Method reduces the number of 2x2-Joins by 32.0% on
average.

There are other logic primitives for RSFQ circuits, such
as RSFQ D» flip-flop. Our future work is to treat other
logic primitives in our framework. Then, we would also
like to combine our method with the existing methods [6,
16, 17] that use RSFQ D, flip-flops for their primitives.
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