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Abstract− In this paper, we present a new timing-driven 
placement algorithm, which attempts to minimize zigzags and 
crisscrosses on the timing-critical paths of a circuit. We 
observed that most of the paths that cause timing problems in 
the circuit meander outside the minimum bounding box of the 
start and end nodes of the path. To limit this undesirable 
behavior, we impose a physical constraint on the placement 
problem, i.e., we assign a preferred signal direction to each 
critical path in the circuit. Starting from an initial placement 
solution, by using a move-based optimization strategy, these 
preferred directions force cells to move in a direction that 
maximizes the monotonic behavior of the timing-critical paths 
in the new placement solution. To make the direction 
assignment tractable, we implicitly group all circuit paths into 
a set of input-output conduits and assign a unique preferred 
direction to each such conduit. We integrated this idea into a 
recursive bipartitioning-based placement framework with a 
min-cut objective function. Experimental results on a set of 
standard placement benchmarks show that this approach 
improves the result of a state-of-the-art industrial placement 
tool for all the benchmark circuits while increasing the wire 
length by a tolerable amount. 

I. Introduction 

Timing optimization during placement has been an active area of 
research and development. This is in part due to the increasing 
ratios of the interconnect delays to the gate delays in deep 
submicron designs and the huge impact of cell placement on wire 
lengths, and therefore, longest path delays in the circuit. In 
general, a “good” timing-aware cell placement tool can positively 
influence the timing closure of the circuit, and thus, greatly reduce 
the overall design turn-around-time. There is therefore a need for 
efficient timing-driven placement algorithms especially for the 
design of high-performance ASICs. 

Many techniques have been developed to optimize circuit delay 
during placement. These techniques may be broadly classified into 
two categories depending on whether they modify the netlist or 
not. Circuit delay during placement can be optimized by using 
buffer insertion, logic replication, or retiming techniques [1-4]. 
On the other hand, many techniques [5-12] do not alter the circuit 
netlist. These techniques often give high weights to or specify 
physical length constraints for the edges that lie on the critical 
timing paths of the circuit. These methods therefore require an a 
priori classification of signal nets into critical and non-critical 
ones based on a static timing analysis of the circuit. Most of the 
reported works use slack values to identify critical nets, and 
decide the net weights or net length constraints. Since net weights 
do not bear a direct relation to the circuit delay, it has been quite 
difficult to stabilize the net weights in order to achieve good 
timing convergence [6]. Net length (or size of net bounding box) 
constraints have a more direct relation to the timing constraints. 
However, it has been difficult to effectively incorporate these 
constraints in a placement tool without creating “solution 
oscillation” problems whereby the constraints on the current set of 
critical nets are satisfied at the expense of making some other nets 

timing-critical. In addition, these techniques tend to over-exert the 
current set of constraints by making the lengths of the critical nets 
much shorter than what they have to be in order to satisfy the 
current timing constraints. A number of researchers [7][8] have 
used the signal direction as an indicator of the timing gain 
function during the move-based partitioning process. Examples 
include “backward edges” [7] and “V-shaped nodes” [8]. These 
early results motivate the use of signal direction to guide the 
performance-driven placement process (see also the last paragraph 
of Section III(A)) 

In this paper, we introduce a novel approach to timing-driven 
placement, which employs a new type of physical constraint 
imposed on the circuit. More precisely, we impose constraints that 
specify preferred signal directions for the timing-critical input-
output conduits in a circuit (see Section III for a formal definition 
of I/O conduits). These constraints then guide the cell placement 
so that timing-critical paths satisfy a type of monotonicity 
property in their cell ordering. Figure 1 depicts a critical path 
which has (a) non-monotone cell ordering and (b) monotone cell 
ordering. Clearly, the path with the monotone cell ordering will 
have a lower delay than the other path. This notion of monotonic 
path has also been used in logic synthesis to consider interconnect 
delay [13][20]. In [4], the logic replication was used to make such 
paths “straightened” for FPGA applications. Unlike their 
approach which uses logic replication, we employ the new 
physical constraint specifying preferred signal directions of the 
timing-critical input-output conduits. This idea has been 
integrated into a recursive bipartitioning-based placement 
framework with min-cut objective, which is a general top-down 
placement algorithm like that in [15]. The notion of the preferred 
signal directions of input-output conduits was described in [21]. 
The focus of that paper was however on circuit partitioning and 
does not consider two-dimensional placement in any form. 

(a) Non-monotone cell ordering    (b) Monotone cell ordering 

Figure 1. An example of a critical timing path. 

II. Problem Statement 

In this section, we describe our basic approach for timing 
optimization during a recursive partitioning-based placement. 

Consider a sequential circuit, represented by a directed graph 
G=(V, E). Each node vi ∈ V represents a combinational cell or 
flip-flop in the design. It has a weight w(vi) which specifies its 



layout area. Let’s denote the set of primary inputs of a circuit as 
PI, the set of primary outputs as PO, and the set of flip-flops as FF. 
We assume that the target chip area is known a priori and that PI 
and PO are placed at the boundary of the chip and remain fixed 
during placement. A path in the circuit is defined as the set of 
nodes and edges that connect a pi ∈ PI (or FF) to a po ∈ PO (or 
FF). Path delay d(π) can be calculated by the summation of delays 
of all the edges and nodes along path π. The minimum cycle time 
of graph G is denoted by ΦG and is equal to Max d(S) where S is a 
set of all paths in a circuit. The primary objective of a timing-
driven placement tool is to minimize the cycle time of a circuit. 

The timing optimization procedure in the context of recursive 
partitioning-based global placement engine typically consists of 
weighted wirelength-driven partitioning (WWP) and static timing 
analysis (STA.) More precisely, critical nets in the circuit are first 
identified based on STA and assigned higher weights. Next WWP 
decomposes the given placement instance into smaller instances 
by dividing the placement region into two sub-regions, and 
assigning cells to one or the other sub-region such that the 
weighted wire length is minimized and a balance condition on the 
total cell area of each sub-region is satisfied. This process 
continues until each region contains fewer then a certain number 
of cells. 

III. Proposed Approach 

A. Signal Direction Constraints 

For completeness, we review here the notion of a signal direction 
of input-output conduits from [21], and the resulting constraint, 
which will be used to straighten critical paths in order to optimize 
circuit delay. 

An input-output (I/O) conduit is defined as the set of all paths 
from some input node (in PI or FF) to some output node (in PO or 
FF). An I/O conduit, σ, is simply identified by the corresponding 
input (pi ∈ PI or FF) and output (po ∈ PO or FF.) Notice that the 
maximum number of I/O conduits in a sequential circuit netlist is 
(nI+nF).(nO+nF) where nI, nO and nF denotes the cardinality of PI, 
PO and FF, respectively. An I/O conduit then belongs to one of 
the following types: PI PO, PI FF, FF FF, or FF PO. 

In our approach a timing constraint is not explicitly specified for 
an individual path. Instead, it is defined for an I/O conduit 
(thereby it implicitly represents a constraint on a large number of 
paths.) We denote a timing constraint for an I/O conduit σ  by 
c(σ). The delay of a I/O conduit is d(σ) = max d(Π) where Π
denotes the set of all paths between pi and po of the I/O conduit. 
Then critical I/O conduits are defined as the set of I/O conduits Γ,
such that for every σ ∈ Γ, d(σ) c(σ).

Signal direction constraints for critical I/O conduits are illustrated 
in Figure 2. A critical I/O conduit σ1 from pi1 to po1 comprises of 
two critical paths pi1 v1 v2 v3 po1 and pi1 v1 v4 v5 po1.
To achieve a monotone cell ordering of these paths, the signal 
directions of edges of σ1 should be from part M0 to part M1. Let 
P(vi) denote the part that node vi is assigned to i.e., P(vi) = 0 if vi

is put in M0, otherwise, P(vi) = 1. Notice that P(vi) of the source 
node vi of an edge e of σ1 should not be any larger than P(vj) of 
the target node vj of that edge, and then both critical paths in σ1

have a monotone cell ordering. 

σ1: pi1→v1→v2→v3→po1, e1(pi1,v1), e2(v1,v2), e3(v2,v3), e4(v3,po1)
pi1→v1→v4→v5→po1, e1(pi1,v1), e5(v1,v4), e6(v4,v5), e7(v5,po1)

σ2: pi2→v6→v7→v8→po2, e8(pi2,v6), e9(v6,v7), e10(v7,v8), e11(v8,po2)

Signal Direction Constraints:
P(s(ei)) ≤ P(t(ei)), 1≤ i ≤  7            for σ1

P(s(ei)) = P(t(ei)) = 0, 8 ≤ i ≤  11    for σ2

where P(vi) is a part number (0 or 1) of vi, and s(ei) and t(ei) are a source 
and target nodes of edge ei, respectively.

Figure 2. Signal direction constraints of critical I/O conduits. 

 This means that all critical paths in a critical I/O conduit σ have a 
monotone cell ordering if and only if all edges of such critical 
paths satisfy signal direction constraints for σ. Notice that in the 
Figure 2 edge e6 violates the signal direction constraints for σ1,
resulting in a non-monotone cell ordering. In addition, for I/O 
conduit σ2, comprising of a single path pi2 v6 v7 v8 po2, both
source and target nodes of edges on σ2 should be put in M0 in 
order to satisfy the signal direction constraint of σ2.

Let L, R, B, and T denote left, right, bottom, and top, respectively. 
Based on the above discussion, we define signal direction
constraints (SDC’s) for a vertical move line as follows: 

SDC1:   if SD(σ)=LL, ∀ ei ∈ σ, P(s(ei)) = P(t(ei)) = 0   

SDC2:   if SD(σ)=RR, ∀ ei ∈ σ, P(s(ei)) = P(t(ei)) = 1    

SDC3:   if SD(σ)=LR, ∀ ei ∈ σ, P(s(ei)) ≤ P(t(ei))

SDC4:   if SD(σ)=RL, ∀ ei ∈ σ, P(s(ei)) ≥ P(t(ei))

where SD(σ) denotes the signal direction of σ, which is one of LL,
RR, LR, or RL for a vertical move line. Clearly, LL (RR) implies 
that both start and end nodes of the conduit are located in M0

(M1), whereas LR (RL) means that the start node of the conduit is 
in M0 (M1) while the end node of the conduit is in M1 (M0). The 
SDC’s for a horizontal move line are obtained similarly (by 
replacing LL with BB, RR with TT, LR with BT, and RL with TB 
in the above equations.) For the remainder of this paper, we will 
only refer to vertical move lines since the case of a horizontal 
move line is really the same. 

Based on the above definitions, each edge of every path in an I/O 
conduit has the same preferred signal direction. Therefore, 
although many paths of a conduit can go through an edge, the 
edge will have only one signal direction constraint (SDC) for the 
conduit. However, a placement solution that satisfies all of the 
SDC’s associated with the timing-critical I/O conduits seldom 
exists for any realistic netlist. This is because, in general, an edge 
may belong to several critical conduits in the circuit, each 
assigning a preferred signal direction to the edge. Therefore, we 



give up on the idea of trying to strictly impose SDC’s. Instead we 
resort to minimizing a cost function which is proportional to the 
number of SDC violations.

We denote a violation of an SDC by SDV, which stands for a 
signal direction violation. To manage the circuit delay as a scalar 
objective function rather than as a set of signal direction 
constraints, we make use of the violation counts of signal 
directions as defined above. More precisely, in the framework of 
move-based local neighborhood search algorithm which is used 
during partition-based placement, we define a timing gain, TG(vi),
to exactly quantify the desirability of moving vi from M0 to M1.
The timing gain for a node vi is thus obtained by summing the 
number of SDV’s of each edge ei connected to node vi as follows. 

SDV1: if vi = s(ei) and P(s(ei)) = P(t(ei)) = 0, then 

TG(vi) −= (SDC1-cnt(ei) + SDC3-cnt(ei))

SDV2:  if vi = s(ei) and P(s(ei)) = P(t(ei)) = 1, then 

TG(vi) −= (SDC2-cnt(ei) + SDC4-cnt(ei))

SDV3: if vi = s(ei) and P(s(ei)) > P(t(ei)), then 

TG(vi) += (SDC1-cnt(ei) + SDC3-cnt(ei))

SDV4: if vi = s(ei) and P(s(ei)) < P(t(ei)), then 

TG(vi) += (SDC2-cnt(ei) + SDC4-cnt(ei))

SDV5: if vi = t(ei) and P(s(ei)) = P(t(ei)) = 0, then 

TG(vi) −=  (SDC1-cnt(ei) + SDC4-cnt(ei))

SDV6:  if vi = t(ei) and P(s(ei)) = P(t(ei)) = 1, then 

TG(vi) −=  (SDC2-cnt(ei) + SDC3-cnt(ei))

SDV7: if vi = t(ei) and P(s(ei)) > P(t(ei)), then 

TG(vi) += (SDC1-cnt(ei) + SDC4-cnt(ei))

SDV8: if vi = t(ei) and P(s(ei)) < P(t(ei)), then 

                TG(vi) += (SDC2-cnt(ei) + SDC3-cnt(ei))

where SDC*-cnt(ei) represents the number of signal direction 
constraints of type * (ranging from 1 to 4)  for edge ei, that is, the 
number of timing-critical I/O conduits with the corresponding 
signal direction that go through the edge. Notice that these 
counter values are pre-computed before we begin the cell 
movements for the purpose of timing optimization. The algorithm 
for setting the SDC-count is described in Section III(B). 

Note that the early works [7][8] that use the signal direction to 
minimize cutsize cannot solve the problem globally. More 
precisely, in these references, the authors attempt to optimize 
local directions of edges without considering the parent path and 
its criticality. Unlike these methods, we aggregate preferred signal 
directions for all critical paths that pass through an edge, which in 
turn enables us to exactly calculate the global signal directions, 
resulting in maximization of the monotonic behavior of the 
critical paths. 

B. Timing Optimization Process 

In a recursive bipartitioning-based timing-driven placement, STA 
is performed at each level of the partitioning hierarchy in order to 
first identify the timing-critical nets, and then to assign them 
higher weights in order to prevent them from being cut at the 
subsequent partitioning step. From our experimentations, we have 
observed that timing analysis and optimization at early 
hierarchical levels are not helpful in reducing the circuit delay. 

       (a) Move directions            (b) v2 is moved to the upper region 

σ : pi→v1→v2→po,  edges: e1(pi,v1), e2(v1,v2), e3(v2,po)
SDC2: SD(σ)=TT, ∀ ei ∈ σ, P(s(ei)) = P(t(ei)) = 1 
SDC2-count(e2) = 1, SDC2-count(e3) = 1 

VC(V2:P(v2)=0) = 2  // SDC violations before v2-move
SDC2 violated for e2 and e3.

VC(V2:P(v2)=1) = 0  // SDC violations after v2-move
SDC2 violations for e2 and e3 are eliminated.

∴TG(v2) = VC(V2:P(v2)=0) VC(V2:P(v2)=1) = 2      

(c) Computation of timing gain for v2-moving to the upper region 

Figure 3. An example of a cell move for timing optimization. 

This is because the size of net bounding box, which is typically 
used for calculating the interconnect parasitics, is too rough at 
such levels where the chip area is divided into only a few sub-
regions. Based on this observation, we start our timing 
optimization process after a few runs of the recursive partitioning 
with min-cut objective. The starting level of hierarchy for the 
timing optimization process is obviously a function of the circuit 
netlist size and the chip bounding box. In this way, we start with 
an initial global placement which has been optimized for 
minimum wire length objective.   

We use an accurate internal STA engine, which uses the Elmore 
delay model and net-length estimation method proposed in [14] to 
calculate the wire delay, and a commercial timing library to obtain 
the gate delays. Based on the results of the timing analyzer, we 
identify the critical edges and nodes as follows: edges with 
negative slack values are marked as critical edges and nodes 
which have at least one critical incoming and/or outgoing edge are 
marked as critical nodes. Next, we find critical I/O conduits for 
each critical edge using a modified depth-first-search algorithm 
(MDFS), which visits only those successor nodes that are 
connected to their parents by critical edges. We add a source node 
and a sink node to the directed graph. Next we run a reverse-
MDFS to find all transitive PI’s and FF’s for each node vi and 
stored them as set Si at that node. Similarly, all transitive PO’s and 
FF’s are searched for and stored at set Ti at the node during 
another MDFS. As a result, we can determine, Cij, the set of all 
conduits that go thru any critical edge eij between nodes vi and vj

in the circuit graph as the Cartesian product of the sets Si and Tj.
Now, we count the number of critical conduits of type LL, LR, RL,
and RR in Cij for a vertical move line, and thereby, initialize the 
corresponding SDC-count for all critical edges in the circuit. 

We explain the timing gain calculation with the help of example 
in Figure 3. In the Section III(A), we described the timing gain 
calculation for the case of a move to a neighboring region over a 
vertical move line. The timing gain for a move across a horizontal 
move line can be calculated in a similar manner. Consider moving 
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a critical node v2 in one of four directions, calculating the timing 
gain for each direction of movement. v2 will be moved in the 
direction with the highest gain. The timing gain calculation for v2

moving to the top region is shown in Figure 3(c). Signal direction 
constraint of the critical I/O conduit σ passing v2 is SDC2 since 
both pi and po of this conduit are in the upper region over the 
horizontal move line. There are two edges connected to this node. 
Edges e2 and e3 do not satisfy SDC2 of conduit σ. This is because 
SD(σ)=TT but the source and target nodes of these two edges are 
not in M1. The number of SDC violations is thus 2. After v2 is 
moved to the upper region, SDC2 can be satisfied for both e2 and 
e3. As a result, the total number of SDC violations are reduced by 
two, i.e., the timing gain for the v2-move is two, TG(v2) = 2. We 
calculate timing gains for other directions in the same way, 
resulting in TG(v2) = 2 for v2 moving to the left region, TG(v2) = 
0 for v2 moving to the right region and TG(v2) = 2 for v2 moving 
to the bottom region. The maximum timing gain of v2 is then 2.  

After computing the timing gains for all critical nodes, we put 
them into a gain heap where nodes are sorted by their gain 
(highest gain move is root of the heap.) Next we extract the root 
node from the heap. Whenever a node vi moves to its preferred 
region rp, we update gains of nodes connected to vi which are 
remaining in the heap and re-order it so that the root is the node 
with highest gain. If the remaining capacity of the region rp is zero, 
then we choose a node vj among non-critical nodes in that region 
based on the computation of wirelength gains for those nodes, and 
move it to the region where vi is coming. This process continues 
until the timing gain heap is empty. The running sum of the total 
timing gain for the moves is constructed during this process in 
order to identify a sequence of moves that produces the maximum 
total gain. Moves that are not part of the accepted move sequence 
are reversed. We call these steps as a pass, which is similar to the 
mechanism used in a general FM partitioner[16]. We go through 
multiples passes until no further timing gain can be achieved. 
Figure 4 shows the pseudo-code for the proposed timing 
optimization flow. 

C.  Timing-driven Placement 

In this section, we describe the flow of our proposed timing-
driven placement. The placement framework is based on a 
recursive bipartitioning-based placement algorithm, which 
comprises of a hierarchical bipartitioning, terminal propagation 
and legalization. Our proposed timing optimization process is 
integrated into this framework. We used hMetis [17] as a 
bipartitioning algorithm, which consists of three phases: 
coarsening, initial partitioning and uncoarsening phases.  

After each bipartitioning, those cells in a sub-region which are 
connected to external cells are propagated to the boundaries of the 
corresponding sub-regions. This terminal propagation is 
performed in a straight-forward manner based on shortest path (or 
a low-cost Steiner tree) connection of connected terminals. Finally, 
we allocate all cells that are contained in each sub-region into 
placement rows when the recursive bipartitioning reaches a 
certain pre-specified end level. This step is typically called 
legalization. We employed a simple technique whereby we divide 
each row to several equal-sized bins, and then, assigned cells in a 
sub-region to bins according to their coordinates. This assignment 
may cause unbalances in the total cell size of each bin. To reduce 
the unbalance, we move cells from “overfilled” bins to 

“underfilled” bins, by a technique similar to that in [18]. Next, 
within each row, cell positions are adjusted to eliminate any cell 
overlaps. This whole procedure is described in Figure 5 and the 
layout hierarchy of bipartitioning-based placement is shown in 
Figure 6. 

First, we calculate the start hierarchy level based on the target size 
of the smallest region before we start the timing optimization 
procedure. We obtained the target initial size of a region by 
experimentation, and from that size, calculated the start level. The 
end level is reached when the size of a sub-region of a hierarchy 
level becomes smaller than ten times the average cell size in the 
design. Next we ran a wirelength-driven bipartitioning-based 
placement algorithm until we reached the start level. This step 
resulted in the initial global placement.

Timing _Optimization_PSD (P,T)

P : An initial hierarchical placement solution with J regions 
T : Timing constraints 

1. Perform static timing analysis; 
2. From T, find critical edges, nodes, and I/O conduits 

(initialize corresponding SDC-count for all critical 
edges); 

3. Compute initial timing gains for all critical nodes; 
4. Put all critical nodes into a timing gain heap; 
5. While (heap != empty) 
6. Extract root node vi from the heap and move it in its 

preferred direction to a neighbor region in  P;
7. If the region capacity is violated, select a non-critical 

node in the region and move it back to the parent 
region of vi;

8. Update timing gains and restructure the heap as 
needed; 

9. Find a sequence of moves that produces max_total_gain; 
10. Undo moves that are not in the selected sequence; 
11. If max_total_gain > 0 then goto step 3; 
12. Else exit; 

Figure 4. Flow of the proposed algorithm for timing 
optimization with preferred signal directions. 

PSD_Placement (G, T)

G : A directed graph representing a sequential circuit 
T : Timing constraints 
1. Calculate the start and end levels of timing-driven global 

placement; 
2. Do initial wirelength-driven global placement from level 

one to start level; 
3. While (start_level i  end_level) 
4. While (j=0; j < number of sub_regions in level i; j++)
5.     Generate a bipartitioning-based placement Pi,j of   

subregion j;
6. Do Timing_Optimization_PSD(Pi ,T);
7. Do the legalization;

Figure 5. Flow of the proposed preferred signal direction 
placement algorithm. 



Figure 6. The layout hierarchy of bipartitioning-based placement 
with level descriptions. 

Next we applied the Timing_Optimization_PSD to each level of 
the hierarchy between the start and end levels. Note that the 
timing optimization procedure is performed only once per 
hierarchical level on placement solution Pi, which itself comprises
of J=2i sub-regions. In Figure 6, for example, at the start level, 
first eight bipartitionings are performed to divide the chip area 
into 16 equal-sized sub-regions. Next, the timing optimization is 
done on the global placement solution with 16 sub-regions. After 
reaching the end level, to allocate cells into placement rows 
without overlaps, a legalization step is performed. 

IV. Experimental Results 

We have implemented the proposed timing optimization 
algorithm and bipartitioning-based hierarchical placement flow in 
C++ on a Sun Ultra Sparc II machine, and tested it on six industry 
circuits. Four of them, matrix, vp2, mac1 and mac2, are among 
the ISPD 2001 Circuit Benchmarks that first appeared in [19]. 
These circuits are also used in [5]. The characteristics of the 
benchmark circuits are summarized in Table 1. We call our 
timing-driven placement approach as PSDP (stands for Preferred 
Signal Direction Placement). We compared PSDP with Capo-
boost [22], which attempts to improve circuit delay by reducing 
the number of global interconnects, and an industrial placement 
tool, which we call QuadP 1 . We use a 0.18µm standard-cell 
library to report the delay results. 

TABLE 1. The characteristics of benchmark circuits 

Circuits #Cells #Nets #IOs 

indust1 5931 5969 179 

indust2 20193 21699 351 

matrix 3,083 3,200 117 

vp2 8,714 8,789 321 

mac1 8,902 9,115 211 

mac2 25,616 26,017 415 

1 QuadP represents the virtual name of a commercial state-of-the-
art placement tool.  

Let total negative slack, TNS, denote the sum of the slacks of all 
paths with negative margins. Table 2 compares TNS between the 
non-timing mode and the timing-driven mode of PSDP. PSDP in 
non-timing mode (wirelength-driven) is the same as algorithm in 
Figure 5 with step 6 removed. To obtain the TNS values, we used 
our STA engine (which uses a commercial timing library to obtain 
the gate delays and relies on the Elmore delay calculation for 
interconnects) and assigned the clock cycle time of each circuit as 
the maximum of “no-wiring path delays [6]” in that circuit. The 
“no-wiring path delay” accounts for the delay of all gates on the 
path, but sets the corresponding wire delays to zero.  We achieved 
an average of 44.5% improvement in TNS by using PSDP timing-
driven mode. 

TABLE 2. Comparison of TNS (total negative slack of all timing 
endpoints) between wirelength-driven and timing-driven mode of 
PSDP with the zero-loading delay clock cycle. 

Benchmark 
circuits 

Clock 
cycle 

Wirelength-
driven mode 

Timing-
driven mode 

%
Improvement 

indust1 5.54 -38.2 -24.4 36.1% 

indust2 8.75 -204.5 -93.1 54.5% 

matrix 3.23 -5.8 -4.3 25.9% 

vp2 3.67 -68.3 -25.1 63.3% 

mac1 2.07 -21.4 -13.5 36.9% 

mac2 2.35 -125.4 -62.7 50.2% 

Average    44.5% 

Table 3 compares PSDP with QuadP in wirelength-driven mode 
and in timing-driven mode, and Capo-boost in terms of the post 
placement wirelength (HPWL) and post routing wirelength 
(RWL), and the post-routing worst negative slack (WNS). We 
perform Cadence WarpRoute to route the placements obtained 
from each placer, extract RC values, and run Pearl to perform 
static timing analysis (STA). We use the values in [5] as the clock 
cycle for the corresponding four circuits. The other two circuits 
are available in complete LEF/DEF/GCF format. The wirelength 
and worst negative slack are represented in microns and in 
nanoseconds, respectively.  

We observe that PSDP in timing-driven mode improved WNS for 
all circuits compared to QuadP in the wirelength-driven mode, on 
average, by 31%, while increasing the total wirelength of post 
placement and post routing, on average, by 5% and 4%, 
respectively. In addition, PSDP usually has a better result in terms 
of WNS compared to the other two placers, QuadP in timing 
mode and Capo-boost; our placer outperformed those placers for 
all benchmark circuits except one. PSDP runs on average 48% 
slower than QuadP in non-timing mode, but PSDP is on average 
58% faster than QuadP in timing-driven mode.  

V. Conclusions 

The paper integrates wire planning into timing-driven min-cut 
placement. It formulates a new kind of constraint on cell locations 
based on preferred signal directions. These preferred directions 
are deduced by grouping all paths from one major source to one 
major sink into I/O conduits.  All paths in the entire circuit are 
grouped into these conduits. Constraints are computed for all cells 
in this way, and they are then used to guide the optimization step 

first level 

second level 

….

start level

….

….

….….

…. ….

end level….….



by forcing the cells to move in a direction such that the timing-
critical paths exhibit a monotonic behavior in their cell ordering. 
The advantage of the new methodology has been confirmed by 
experimental results; our placer achieves on average 31% 
improvement on WNS compared to a leading industry placer at 
the expense of wirelength increase, on average, by 5%. 
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TABLE 3. Timing-driven results of PSDP for six industry circuits with comparison to QuadP and Capo-boost. 

QuadP 

(wirelength-driven mode) 

QuadP 

(timing-driven mode) 
Capo-boost 

PSDP 

(timing-driven mode) 
Benchmark 

circuits 

Clock 

cycle 
HPWL RWL WNS HPWL RWL WNS HPWL RWL WNS HPWL RWL WNS

indust1 6.60 350134 461533 -1.23 358551 465394 -1.22 354437 472033 -1.85 357728 479551 -0.89

indust2 15.50 1573453 2754704 -4.31 1567428 2810432 -3.81 1638655 2866492 -3.52 1606993 2906574 -3.17

matrix 3.89 104695  116987  -2.2 107921 120481 -2.06 105133  115670 -2.04 111958  122867 -2.01

vp2 4.57 370677  450872  -3.02 377096 453074 -3.21 364578  482548 -3.21 381118  489366 -2.95

mac1 3.85 443460  506880  -0.56 444704 509136 -0.49 476643  523736 -0.41 481045  524894 -0.30

mac2 7.67 2247603  3244264  -14.46 2249426 3297112 -3.63 2354646 2948992 -1.01 2408205  3123254 -3.73

Ratio   1.00 1.00 1.00 1.01 1.01 0.83 1.03 1.01 0.85 1.05 1.04 0.69 
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