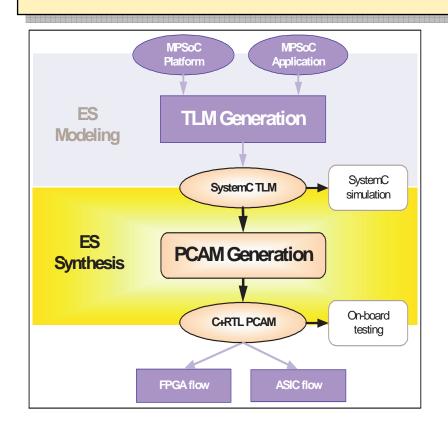


Embedded Systems Environment Back End


ESE Technology

Today's embedded system designs are complex heterogeneous platforms consisting of multiple standard and custom processors, each with possibly different interface, communicating over a network of busses and bridges.

System design tools are needed for prototyping such platforms with FPGA or ASIC technologies. ESE **incorporates more than 15 years of research and development** in system languages, synthesis and verification to provide automatic system prototyping from TLM.

C	Specification Model Capture		
	7. Application		7. Application
	6. Presentation	Spec	6. Presentation
	5. Session	TLM	5. Session
	4. Transport		4. Transport
	3. Network		3. Network
	2c. Link + Stream		2c. Link + Stream
	2b. Media Access Ctrl		2b. Media Access Ctrl
-	2a. Protocol		2a. Protocol
	1. Physical		1. Physical
		Address Lines	

ESE Back End helps system designers by automatically synthesizing system prototypes from the given Transaction Level Models (TLMs). System designers can create, modify and test their platforms in a few days compared to months of RTL coding and simulation. They can quickly make board prototypes available to application developers for generating and validating critical SW and HW interactions across multiple cores

ESE Features

Graphical Entry

TLM capture with application C code and platform specification.

Automatic system SW generation for each processor.

Cycle accurate RTL synthesis for all interfaces and HW cores.

Automatic bridge generation for protocol translation between incompatible cores.

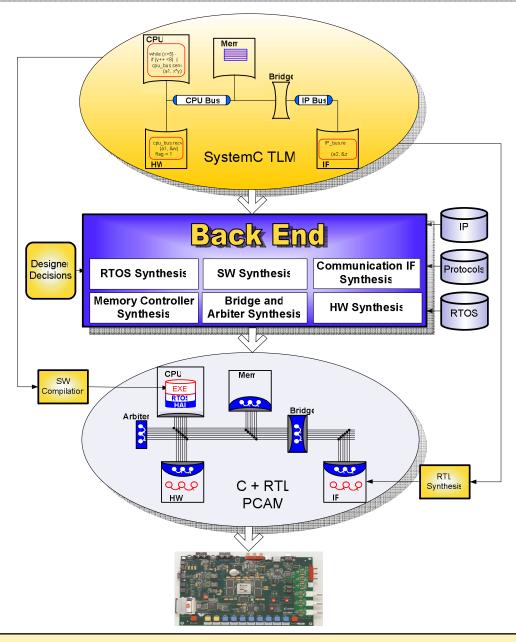
FPGA/ASIC-ready output

The output model has synthesizable RTL for all HW and drivers with application C code for downloading to embedded processors.

Embedded Systems Environment Back End

Designer Advantages

- No need to learn system level modeling style or languages \rightarrow No need to develop synthesizable RTL code for HW interfaces
- Automatic RTL generation → Automatic SW generation →


 \rightarrow

TLM is easier to debug and fix

Graphical entry to ESE

No need to develop processor and platform specific system SW

No need to simulate, learn and debug cycle accurate models

Management Benefits

→

 \rightarrow

Automatic system design from TLM Synthesizable RTL/C output

- Design decisions and TLMs can be shared → →
- TLMs can be easily reused and extended
- 1000X productivity gain in modeling and verification
- Easy fit with existing tools, minimal training time
- Simplified globally-distributed collaboration
- Easier product upgrade and customization