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Embedded System Design

• Productivity Gap
Hardware design gap

+ Software design gap

= System design gap
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(source: “Hardware-dependent Software”, Ecker et al., 2009)
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Embedded System Design

• How can we overcome the productivity gap?

• System Level Design
– Unified HW and SW design

– Higher level of abstraction
• Fewer, more complex components 

• Maintain system overview
– Without overwhelming details

• Compose a system of algorithms

– System Level Design Languages
• SpecC [Gajski et. al, 2000]

• SystemC [Groetker et. al, 2002]
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1E3

1E4

1E5
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1E7

Number of components Level

Gate

RTL

Algorithm

System

Transistor

Source: “System Design: A Practical Guide with SpecC”, 2001

International Technology Roadmap for Semiconductors (ITRS) 2004:  
higher-level abstraction and specification is the first promising solution 
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• System Level Modeling
– Abstract description of a complete system

– Hardware + Software

• Key Concepts in System Modeling 
– Explicit Structure

• Block diagram structure

• Connectivity through ports

– Explicit Hierarchy
• System composed of components

– Explicit Concurrency
• Potential for parallel execution

• Potential for pipelined execution

– Explicit Communication and Computation
• Channels and Interfaces

• Behaviors / Modules

Embedded System Design

B0 B1

B2 B3

System Model
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Computer-Aided Recoding

• Embedded System Design Flow
– Input:    System model

– Output: MPSoC platform

• Actual Starting Point
– C reference code

– Flat, unstructured, sequential

– Insufficient for system exploration

• Need: System model
– System-Level Description Language (SLDL)

– Well-structured
• Explicit computation, explicit communication

• Potential parallelism explicitly exposed

– Analyzable, synthesizable, verifiable

• Research: Automatic Re-Coding
– How to get from flat and sequential C code

to a flexible and parallel system model?

V1

func2()

func3()

V2 V3

func1()

C Code

B0 B1

B2 B3

System Model

M

M

P1 P2

IPIP

MPSoC Platform

M

Re-Coding



Tutorial SD1, ASPDAC '14 January 20, 2014

Singapore 4

January 20, 2014Tutorial SD1, ASPDAC '14, Singapore 7

Motivation

• Extend of Automation
– Refinement-based design flow
• Automatic

• Specification model down to 
implementation

• Example: SCE (mostly automatic)
• MP3 decoder: less than 1 week

• Manual
• Source code transformations
• C reference code to

SpecC specification model
• MP3 decoder: 12-14 weeks!

• Automation Gap
– 90% of overall design time

is spent on re-coding!

• Proposal: Automatic Recoding

Automation GapManual 12-14 weeks

Less than
1 week

Automatic

C Reference Code

Specification Model

Architecture Model

Architecture Exploration

...

Communication Model

Comm. Exploration

Implementation

Source: System Design: A Practical Guide with SpecC

Recoding
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Problem Definition

• How to get from flat, sequential C code
to a flexible, parallel system model?

• Recoding 
– Create structural hierarchy

– Partition code and data
• Expose concurrency (parallelize/pipeline)

– Expose communication

– Eliminate pointers

– Make the code compliant
to the design tools, …

• Our approach
– Computer-Aided Recoding

• Interactive source code transformations

System Model

B0 B1

B2 B3

C1

C2

C3

C
5

C
6

C code

V1

func1 (…) {…}

V2 V3

func2 (…) {…}

func3 (…) {…}

func4 (…) {…}

func5 (…) {…}

Recoding
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Computer-Aided Recoding

• Complete Automation is Infeasible!
– Today’s parallelizing compilers are largely ineffective

• Heterogeneous architectures
• Complexity of embedded applications
• Hard problems (eliminating pointers, exposing parallelism, etc.)

– Modeling requires understanding of the application
– Recoding is not a monolithic transformation 

• Multiple transformations in application-specific order

Interactive Approach
– “Designer-in-the-loop”
– Designer can utilize application knowledge

• Designer-controlled Transformations
– Designer makes decisions
– Tool automatically transforms the source code
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Overcoming the Specification Gap

Specification 
Model

B0 B1

B2 B3
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V2 V3

func2 (…) {…}

func3 (…) {…}

func4 (…) {…}

func5 (…) {…}

func6 (…) {…}

GAP

Recoding

• Recoding Transformations
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Overcoming the Specification Gap

• Recoding Transformations
– Creating structural hierarchy [ASPDAC’08]
– Code and data partitioning [DAC’07]
– Creating explicit communication [ASPDAC’07]
– Recode pointers [ISSS/CODES’07]

C Reference 
Model

V1

func1 (…) {…}

V2 V3

func2 (…) {…}
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Flexible
System 
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…

Recode Pointers

Partitioned
Model
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Partition Code
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Model

Create Hierarchy
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Prototype 1: Interactive Source Recoder

• Prototype Implementation (by P. Chandraiah)
– Integrated

Development
Environment (IDE)

• Cute tool is a union of
– Text editor

– Abstract Syntax Tree
(AST)

– Parser

– Transformations

– Code generator

Document
Object

Parser

Text  Editor
Transformation 

Tools

Preproc

GUI

Code Generator

AST
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Prototype 1: Interactive Source Recoder

• Interactive Environment
– Scintilla + QT + AST + 

Transformations

• Basic editing
– Syntax highlighting

– Auto-completion

– …

• Recoding
Transformations
– Dependency analysis

– Code and data splitting 

– Variable re-scoping

– Port insertion

– …

January 20, 2014Tutorial SD1, ASPDAC '14, Singapore 14

Prototype 1: Experiments and Results

• We have conducted various sets of experiments
• Goals

– Responsiveness of the “compiler in the editor”
– Estimated Productivity Gains

• Extrapolation based on the number of lines of code changed

– Measured Productivity Gains
• Class of graduate students

• Design examples
– GSM Vocoder (voice codec in mobile phones)
– MP3 Decoder (audio decoder, e.g. iPod)

• Fixed-point version
• Floating-point version

– JPEG Encoder (image encoder, e.g. digital camera)
– …
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Prototype 1: Responsiveness

Operation Simple JPEG MP3 GSM

Lines of code 174 1642 7086 7492

Objects in AST 1073 5338 31763 26009

Synch AST 0.15 secs 0.19 secs 0.68 secs 0.55 secs

• Why measure Responsiveness?
– To check feasibility

• Responsiveness
– Response to designer actions
– Time to synch AST 

• On editing

– Time to synch Editor
• On transformation

– Depends on the size                 
of the AST

• Design examples
– JPEG, MP3, GSM
 << 1 sec

(on a 3 GHz Linux PC) 

– File I/O overhead (20%)

Document
Object

Parser

Text  
Editor

Transform. 
Tools

Preproc

GUI

Code Generator

AST

Synch Editor 0.16 secs 0.20 secs 0.73 secs 0.59 secs
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Prototype 1: Experimental Results

• Productivity Gain
– Creating

structural hierarchy
• Manually

– estimation
• Automatically

– measured

• Results
– Manual time
weeks

– Recoding time
minutes

Significant productivity gains!

Properties JPEG Float-MP3 Fix-MP3 GSM

Lines of C 
code

1K 3K 10K 10K

C Functions 32 30 67 163

Lines of SpecC 
code

1.6K 7K 13K 7K

Behaviors 
created

28 43 54 70

Re-Coding 
time

 30 mins  35 mins  40 mins  50 mins

Manual time 1.5 
weeks

3 weeks 2 weeks 4 weeks

Productivity 
gain

120 205 120 192

[ASPDAC’08]
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Prototype 1: Productivity Gains

• Measured Productivity Gains
– Class of 15 graduate students
– Recode an MP3 design example

• Manually (given detailed instructions)
• Automatically (using the Source Recoder)

• Results

– Productivity factors vary, but show significant gains!

0.0

5.0

10.0

15.0

20.0

Gain

1 3 5 7 9 11 13 15

Student

0.0
10.0
20.0
30.0
40.0
50.0
60.0

Gain

1 3 5 7 9 11 13 15

Student

Creating Structural Hierachy Pointer Recoding

Recoding for Safe Parallel ESL Models
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Recoding Project 1: Creation of Parallel Models

Recoding Project 2:
Safe Parallel Models
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Recoding for Safe Parallel ESL Models

• Recoding Project 1: Creation of Parallel Models
– Prototype 1: Interactive Source Recoder

• by Pramod Chandraiah

– Focus on designer-controlled source code transformations

Recoding Project 2: Recoding for Safe Parallelism
– Prototype 2: Eclipse-based Recoding Platform

• by Xu Han, Weiwei Chen

– Focus on Advanced Model Analysis

Case Study on a Canny Edge Decoder

• Variable Dependency Analysis

• Static Parallel Access Conflict Analysis

• Race Condition Analysis

19January 20, 2014

• Eclipse Framework
is an extensible platform to build IDEs

Eclipse-Based Recoding Platform

Tutorial SD1, ASPDAC '14, Singapore

Eclipse SDK:   source: Carlson, Eclipse Distilled, 2005

20January 20, 2014
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• Eclipse Framework:
Integrated Recoding Operations
– Automatic Compiling

• Compilation in the background

• Static design analysis

• Variable dependency analysis

– Hierarchy View
• Behavior hierarchy display

• Behavior hierarchy navigator

• Context menu for advanced analysis

– Non-local Variable View
• Dependent variables display

• Conflicting variable access display

Eclipse-Based Recoding Platform
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Eclipse-Based Recoding Platform
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Hierarchy 
View

Non-local variable 
View
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Eclipse-Based Recoding Platform
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Hierarchy 
View

Non-local variable 
View

Eclipse-Based Recoding Platform
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Race Condition 
Browser:
- Parallel Access
Conflict Analysis
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Classroom Case Study

• Case Study Experimental Setup
– A class of 68 graduate students

– Individually assigned recoding task

– SpecC-extended Eclipse offered as an optional tool

• Assigned task:
– Recode Canny edge detector from C reference  to SpecC SLDL

1. Analysis: gaussian_smooth contains 50% of the computation

2. Decision for parallelization: parallelize gaussian_smooth

3. Structure and variable recoding

Tutorial SD1, ASPDAC '14, Singapore 25January 20, 2014

• Recode the gaussian_smooth function

Classroom Case Study

Tutorial SD1, ASPDAC '14, Singapore

Structure Recoding
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• Recode the gaussian_smooth function

Classroom Case Study

Tutorial SD1, ASPDAC '14, Singapore

Variable Recoding
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• Recode the gaussian_smooth function

Classroom Case Study

Tutorial SD1, ASPDAC '14, Singapore

Variable
Dependency
Analysis
– Designer-controlled

options

• re-locate

• localize

• duplicate

• channels/ports

28January 20, 2014
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• Case Study Results

Classroom Case Study

Tutorial SD1, ASPDAC '14, Singapore

non-Eclipse 
34%

no valid 
response

32%

Eclipse 
27%

hybrid 
7%

Student Distribution
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• Case Study Results

Classroom Case Study

Student Ratings
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52%

useful 
35%

some-
what 
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not 
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some-
what 
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4% did not 
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9%

Hierarchy View Non-local Variable View
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• Case Study Results

Classroom Case Study

Eclipse users: needed less time, yet made less mistakes!

Tutorial SD1, ASPDAC '14, Singapore
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Effect on Working Time and Correctness
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Conclusions

• Embedded System Design
– Start from higher level of abstraction
– Need flexible system models in SLDL

• Motivation
– Automation gap between C reference and SLDL system models
– 90% of the overall design time spent on “coding” and “re-coding”
– Need for design automation

• Problem
– Complete automation is difficult

• Approach
– Computer-Aided Recoding using Source Recoder
– Designer-in-the-loop

• Results
– Significant gains in productivity
– Significant improvements in correctness

• Future work
– SystemC!
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