
Tutorial SD1, ASPDAC '14 January 20, 2014

Singapore 1

Specification

n
n i

n n n
n n n

Designer-in-the-Loop Recoding
to Create Safe Parallel ESL Models
Tutorial SD1: High-Level Specifications to Cope with Design Complexity

Rainer Dömer
CECS

University of California, Irvine
USA

Outline

• Embedded System Design Challenge
– Productivity Gap

– System Level Modeling Concepts

• Computer-Aided Recoding
– Introduction and Motivation

– Recoding Transformations

– Recoding Analysis

• Prototype Implementations
– Interactive Source Recoder

– Eclipse-based Recoding Platform

• Experiments and Results
– Classroom Case Studies

• Conclusions

January 20, 2014Tutorial SD1, ASPDAC '14, Singapore 2

Tutorial SD1, ASPDAC '14 January 20, 2014

Singapore 2

January 20, 2014Tutorial SD1, ASPDAC '14, Singapore 3

Embedded System Design

• Productivity Gap
Hardware design gap

+ Software design gap

= System design gap

HW Design
Productivity
1.6x/18 months

Capability of
Technology
2x/18 months

Software
Productivity
2x/5 years

log

19
81

19
85

19
89

19
93

19
97

20
01

20
05

20
09

Average HW +
SW Productivity

Additional SW
required for HW
2x/10 months

System
Design Gap

HW Design
Gap

time

(source: “Hardware-dependent Software”, Ecker et al., 2009)

January 20, 2014Tutorial SD1, ASPDAC '14, Singapore 4

Embedded System Design

• How can we overcome the productivity gap?

• System Level Design
– Unified HW and SW design

– Higher level of abstraction
• Fewer, more complex components

• Maintain system overview
– Without overwhelming details

• Compose a system of algorithms

– System Level Design Languages
• SpecC [Gajski et. al, 2000]

• SystemC [Groetker et. al, 2002]

1E0

1E1

1E2

1E3

1E4

1E5

1E6

1E7

Number of components Level

Gate

RTL

Algorithm

System

Transistor

Source: “System Design: A Practical Guide with SpecC”, 2001

International Technology Roadmap for Semiconductors (ITRS) 2004:
higher-level abstraction and specification is the first promising solution

Tutorial SD1, ASPDAC '14 January 20, 2014

Singapore 3

January 20, 2014Tutorial SD1, ASPDAC '14, Singapore 5

• System Level Modeling
– Abstract description of a complete system

– Hardware + Software

• Key Concepts in System Modeling
– Explicit Structure

• Block diagram structure

• Connectivity through ports

– Explicit Hierarchy
• System composed of components

– Explicit Concurrency
• Potential for parallel execution

• Potential for pipelined execution

– Explicit Communication and Computation
• Channels and Interfaces

• Behaviors / Modules

Embedded System Design

B0 B1

B2 B3

System Model

January 20, 2014Tutorial SD1, ASPDAC '14, Singapore 6

Computer-Aided Recoding

• Embedded System Design Flow
– Input: System model

– Output: MPSoC platform

• Actual Starting Point
– C reference code

– Flat, unstructured, sequential

– Insufficient for system exploration

• Need: System model
– System-Level Description Language (SLDL)

– Well-structured
• Explicit computation, explicit communication

• Potential parallelism explicitly exposed

– Analyzable, synthesizable, verifiable

• Research: Automatic Re-Coding
– How to get from flat and sequential C code

to a flexible and parallel system model?

V1

func2()

func3()

V2 V3

func1()

C Code

B0 B1

B2 B3

System Model

M

M

P1 P2

IPIP

MPSoC Platform

M

Re-Coding

Tutorial SD1, ASPDAC '14 January 20, 2014

Singapore 4

January 20, 2014Tutorial SD1, ASPDAC '14, Singapore 7

Motivation

• Extend of Automation
– Refinement-based design flow
• Automatic

• Specification model down to
implementation

• Example: SCE (mostly automatic)
• MP3 decoder: less than 1 week

• Manual
• Source code transformations
• C reference code to

SpecC specification model
• MP3 decoder: 12-14 weeks!

• Automation Gap
– 90% of overall design time

is spent on re-coding!

• Proposal: Automatic Recoding

Automation GapManual 12-14 weeks

Less than
1 week

Automatic

C Reference Code

Specification Model

Architecture Model

Architecture Exploration

...

Communication Model

Comm. Exploration

Implementation

Source: System Design: A Practical Guide with SpecC

Recoding

January 20, 2014Tutorial SD1, ASPDAC '14, Singapore 8

Problem Definition

• How to get from flat, sequential C code
to a flexible, parallel system model?

• Recoding
– Create structural hierarchy

– Partition code and data
• Expose concurrency (parallelize/pipeline)

– Expose communication

– Eliminate pointers

– Make the code compliant
to the design tools, …

• Our approach
– Computer-Aided Recoding

• Interactive source code transformations

System Model

B0 B1

B2 B3

C1

C2

C3

C
5

C
6

C code

V1

func1 (…) {…}

V2 V3

func2 (…) {…}

func3 (…) {…}

func4 (…) {…}

func5 (…) {…}

Recoding

Tutorial SD1, ASPDAC '14 January 20, 2014

Singapore 5

January 20, 2014Tutorial SD1, ASPDAC '14, Singapore 9

Computer-Aided Recoding

• Complete Automation is Infeasible!
– Today’s parallelizing compilers are largely ineffective

• Heterogeneous architectures
• Complexity of embedded applications
• Hard problems (eliminating pointers, exposing parallelism, etc.)

– Modeling requires understanding of the application
– Recoding is not a monolithic transformation

• Multiple transformations in application-specific order

Interactive Approach
– “Designer-in-the-loop”
– Designer can utilize application knowledge

• Designer-controlled Transformations
– Designer makes decisions
– Tool automatically transforms the source code

January 20, 2014Tutorial SD1, ASPDAC '14, Singapore 10

Overcoming the Specification Gap

Specification
Model

B0 B1

B2 B3

C1

C2

C3

C
5

C
6

C Reference
Model

V1

func1 (…) {…}

V2 V3

func2 (…) {…}

func3 (…) {…}

func4 (…) {…}

func5 (…) {…}

func6 (…) {…}

GAP

Recoding

• Recoding Transformations

Tutorial SD1, ASPDAC '14 January 20, 2014

Singapore 6

January 20, 2014Tutorial SD1, ASPDAC '14, Singapore 11

Overcoming the Specification Gap

• Recoding Transformations
– Creating structural hierarchy [ASPDAC’08]
– Code and data partitioning [DAC’07]
– Creating explicit communication [ASPDAC’07]
– Recode pointers [ISSS/CODES’07]

C Reference
Model

V1

func1 (…) {…}

V2 V3

func2 (…) {…}

func3 (…) {…}

func4 (…) {…}

func5 (…) {…}

func6 (…) {…}

Flexible
System
Model

B0 B1

B2 B3

C1

C2

C3

C
5

C
6

Expose
Communication

…

Recode Pointers

Partitioned
Model

B0 B1

B2 B3

V1 V2 V3

Partition Code
and Data

B0

B1

B2

Hierarchical
Model

Create Hierarchy

January 20, 2014Tutorial SD1, ASPDAC '14, Singapore 12

Prototype 1: Interactive Source Recoder

• Prototype Implementation (by P. Chandraiah)
– Integrated

Development
Environment (IDE)

• Cute tool is a union of
– Text editor

– Abstract Syntax Tree
(AST)

– Parser

– Transformations

– Code generator

Document
Object

Parser

Text Editor
Transformation

Tools

Preproc

GUI

Code Generator

AST

Tutorial SD1, ASPDAC '14 January 20, 2014

Singapore 7

January 20, 2014Tutorial SD1, ASPDAC '14, Singapore 13

Prototype 1: Interactive Source Recoder

• Interactive Environment
– Scintilla + QT + AST +

Transformations

• Basic editing
– Syntax highlighting

– Auto-completion

– …

• Recoding
Transformations
– Dependency analysis

– Code and data splitting

– Variable re-scoping

– Port insertion

– …

January 20, 2014Tutorial SD1, ASPDAC '14, Singapore 14

Prototype 1: Experiments and Results

• We have conducted various sets of experiments
• Goals

– Responsiveness of the “compiler in the editor”
– Estimated Productivity Gains

• Extrapolation based on the number of lines of code changed

– Measured Productivity Gains
• Class of graduate students

• Design examples
– GSM Vocoder (voice codec in mobile phones)
– MP3 Decoder (audio decoder, e.g. iPod)

• Fixed-point version
• Floating-point version

– JPEG Encoder (image encoder, e.g. digital camera)
– …

Tutorial SD1, ASPDAC '14 January 20, 2014

Singapore 8

January 20, 2014Tutorial SD1, ASPDAC '14, Singapore 15

Prototype 1: Responsiveness

Operation Simple JPEG MP3 GSM

Lines of code 174 1642 7086 7492

Objects in AST 1073 5338 31763 26009

Synch AST 0.15 secs 0.19 secs 0.68 secs 0.55 secs

• Why measure Responsiveness?
– To check feasibility

• Responsiveness
– Response to designer actions
– Time to synch AST

• On editing

– Time to synch Editor
• On transformation

– Depends on the size
of the AST

• Design examples
– JPEG, MP3, GSM
 << 1 sec

(on a 3 GHz Linux PC)

– File I/O overhead (20%)

Document
Object

Parser

Text
Editor

Transform.
Tools

Preproc

GUI

Code Generator

AST

Synch Editor 0.16 secs 0.20 secs 0.73 secs 0.59 secs

January 20, 2014Tutorial SD1, ASPDAC '14, Singapore 16

Prototype 1: Experimental Results

• Productivity Gain
– Creating

structural hierarchy
• Manually

– estimation
• Automatically

– measured

• Results
– Manual time
weeks

– Recoding time
minutes

Significant productivity gains!

Properties JPEG Float-MP3 Fix-MP3 GSM

Lines of C
code

1K 3K 10K 10K

C Functions 32 30 67 163

Lines of SpecC
code

1.6K 7K 13K 7K

Behaviors
created

28 43 54 70

Re-Coding
time

 30 mins  35 mins  40 mins  50 mins

Manual time 1.5
weeks

3 weeks 2 weeks 4 weeks

Productivity
gain

120 205 120 192

[ASPDAC’08]

Tutorial SD1, ASPDAC '14 January 20, 2014

Singapore 9

January 20, 2014Tutorial SD1, ASPDAC '14, Singapore 17

Prototype 1: Productivity Gains

• Measured Productivity Gains
– Class of 15 graduate students
– Recode an MP3 design example

• Manually (given detailed instructions)
• Automatically (using the Source Recoder)

• Results

– Productivity factors vary, but show significant gains!

0.0

5.0

10.0

15.0

20.0

Gain

1 3 5 7 9 11 13 15

Student

0.0
10.0
20.0
30.0
40.0
50.0
60.0

Gain

1 3 5 7 9 11 13 15

Student

Creating Structural Hierachy Pointer Recoding

Recoding for Safe Parallel ESL Models

January 20, 2014Tutorial SD1, ASPDAC '14, Singapore 18

Recoding Project 1: Creation of Parallel Models

Recoding Project 2:
Safe Parallel Models

Tutorial SD1, ASPDAC '14 January 20, 2014

Singapore 10

Tutorial SD1, ASPDAC '14, Singapore

Recoding for Safe Parallel ESL Models

• Recoding Project 1: Creation of Parallel Models
– Prototype 1: Interactive Source Recoder

• by Pramod Chandraiah

– Focus on designer-controlled source code transformations

Recoding Project 2: Recoding for Safe Parallelism
– Prototype 2: Eclipse-based Recoding Platform

• by Xu Han, Weiwei Chen

– Focus on Advanced Model Analysis

Case Study on a Canny Edge Decoder

• Variable Dependency Analysis

• Static Parallel Access Conflict Analysis

• Race Condition Analysis

19January 20, 2014

• Eclipse Framework
is an extensible platform to build IDEs

Eclipse-Based Recoding Platform

Tutorial SD1, ASPDAC '14, Singapore

Eclipse SDK: source: Carlson, Eclipse Distilled, 2005

20January 20, 2014

Tutorial SD1, ASPDAC '14 January 20, 2014

Singapore 11

• Eclipse Framework:
Integrated Recoding Operations
– Automatic Compiling

• Compilation in the background

• Static design analysis

• Variable dependency analysis

– Hierarchy View
• Behavior hierarchy display

• Behavior hierarchy navigator

• Context menu for advanced analysis

– Non-local Variable View
• Dependent variables display

• Conflicting variable access display

Eclipse-Based Recoding Platform

Tutorial SD1, ASPDAC '14, Singapore 21January 20, 2014

Eclipse-Based Recoding Platform

Tutorial SD1, ASPDAC '14, Singapore 22January 20, 2014

Hierarchy
View

Non-local variable
View

Tutorial SD1, ASPDAC '14 January 20, 2014

Singapore 12

Eclipse-Based Recoding Platform

Tutorial SD1, ASPDAC '14, Singapore 23January 20, 2014

Hierarchy
View

Non-local variable
View

Eclipse-Based Recoding Platform

Tutorial SD1, ASPDAC '14, Singapore 24January 20, 2014

Race Condition
Browser:
- Parallel Access
Conflict Analysis

Tutorial SD1, ASPDAC '14 January 20, 2014

Singapore 13

Classroom Case Study

• Case Study Experimental Setup
– A class of 68 graduate students

– Individually assigned recoding task

– SpecC-extended Eclipse offered as an optional tool

• Assigned task:
– Recode Canny edge detector from C reference to SpecC SLDL

1. Analysis: gaussian_smooth contains 50% of the computation

2. Decision for parallelization: parallelize gaussian_smooth

3. Structure and variable recoding

Tutorial SD1, ASPDAC '14, Singapore 25January 20, 2014

• Recode the gaussian_smooth function

Classroom Case Study

Tutorial SD1, ASPDAC '14, Singapore

Structure Recoding

26January 20, 2014

Tutorial SD1, ASPDAC '14 January 20, 2014

Singapore 14

• Recode the gaussian_smooth function

Classroom Case Study

Tutorial SD1, ASPDAC '14, Singapore

Variable Recoding

27January 20, 2014

• Recode the gaussian_smooth function

Classroom Case Study

Tutorial SD1, ASPDAC '14, Singapore

Variable
Dependency
Analysis
– Designer-controlled

options

• re-locate

• localize

• duplicate

• channels/ports

28January 20, 2014

Tutorial SD1, ASPDAC '14 January 20, 2014

Singapore 15

• Case Study Results

Classroom Case Study

Tutorial SD1, ASPDAC '14, Singapore

non-Eclipse
34%

no valid
response

32%

Eclipse
27%

hybrid
7%

Student Distribution

29January 20, 2014

• Case Study Results

Classroom Case Study

Student Ratings

Tutorial SD1, ASPDAC '14, Singapore

very
useful
52%

useful
35%

some-
what

useful
9%

not
useful

0%

did not
use 4%

very
useful

9%

useful
39%

some-
what

useful
39%

not
useful

4% did not
use
9%

Hierarchy View Non-local Variable View

30January 20, 2014

Tutorial SD1, ASPDAC '14 January 20, 2014

Singapore 16

• Case Study Results

Classroom Case Study

Eclipse users: needed less time, yet made less mistakes!

Tutorial SD1, ASPDAC '14, Singapore

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

150

170

190

210

230

250

270

290

non-Eclipse Eclipse hybrid

Avg. Working Time Correct Model Simulation

M
in

ut
es

C
or

re
ct

ne
ss

31January 20, 2014

Effect on Working Time and Correctness

January 20, 2014Tutorial SD1, ASPDAC '14, Singapore 32

Conclusions

• Embedded System Design
– Start from higher level of abstraction
– Need flexible system models in SLDL

• Motivation
– Automation gap between C reference and SLDL system models
– 90% of the overall design time spent on “coding” and “re-coding”
– Need for design automation

• Problem
– Complete automation is difficult

• Approach
– Computer-Aided Recoding using Source Recoder
– Designer-in-the-loop

• Results
– Significant gains in productivity
– Significant improvements in correctness

• Future work
– SystemC!

Tutorial SD1, ASPDAC '14 January 20, 2014

Singapore 17

January 20, 2014Tutorial SD1, ASPDAC '14, Singapore 33

References
• [ASPDAC’07] P. Chandraiah, J. Peng, R. Dömer, "Creating Explicit Communication in SoC Models Using

Interactive Re-Coding", Proceedings of the Asia and South Pacific Design Automation Conference 2007,
Yokohama, Japan, January 2007.

• [IESS’07] P. Chandraiah, R. Dömer, "An Interactive Model Re-Coder for Efficient SoC Specification",
Proceedings of the International Embedded Systems Symposium, "Embedded System Design: Topics,
Techniques and Trends" (ed. A. Rettberg, M. Zanella, R. Dömer, A. Gerstlauer, F. Rammig), Springer, Irvine,
California, May 2007.

• [DAC’07] P. Chandraiah, R. Dömer, "Designer-Controlled Generation of Parallel and Flexible Heterogeneous
MPSoC Specification", Proceedings of the Design Automation Conference 2007, San Diego, California, June
2007.

• [ISSS+CODES’07] P. Chandraiah, R. Dömer, "Pointer Re-coding for Creating Definitive MPSoC Models",
Proceedings of the International Conference on Hardware/Software Codesign and System Synthesis,
Salzburg, Austria, September 2007.

• [ASPDAC’08] P. Chandraiah, R. Dömer, "Automatic Re-coding of Reference Code into Structured and
Analyzable SoC Models", Proceedings of the Asia and South Pacific Design Automation Conference 2008,
Seoul, Korea, January 2008.

• [TCAD’08] P. Chandraiah, R. Dömer, “Code and Data Structure Partitioning for Parallel and Flexible MPSoC
Specification Using Designer-Controlled Re-Coding”, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems vol. 27, no. 6, pp. 1078-1090, June 2008.

• [DATE’09] R. Leupers, A. Vajda, M. Bekooij, S. Ha, R. Dömer, A. Nohl, "Programming MPSoC Platforms:
Road Works Ahead!", Proceedings of Design Automation and Test in Europe, Nice, France, April 2009.

• [ACM TECS’12] P. Chandraiah, R. Dömer, "Computer-Aided Recoding to Create Structured and Analyzable
System Models", ACM Transactions on Embedded Computer Systems, vol. 11S, no. 1, article 23, 27 pages,
June 2012.

• [HLDVT’12] W. Chen, C. Chang, X. Han, R. Dömer, "Eliminating Race Conditions in System-Level Models by
using Parallel Simulation Infrastructure", Proceedings of the International High Level Design Validation and
Test Workshop 2012, Huntington Beach, California, November 2012.

• [HLDVT’13] X. Han, W. Chen, R. Dömer, "Designer-in-the-Loop Recoding of ESL Models using Static Parallel
Access Conflict Analysis", Proceedings of the 16th International Workshop on Software and Compilers for
Embedded Systems, St. Goar, Germany, June 2013.

