
Pushing the Limits of Standard-Compliant
Parallel SystemC Simulation

SystemC Evolution Day,
Oct. 31, 2019

(c) 2019 R. Doemer, CECS 1

Pushing the Limits
of Standard-Compliant

Parallel SystemC Simulation

Rainer Dömer
Center for Embedded and Cyber-Physical Systems

University of California, Irvine

© Accellera Systems Initiative

Presentation Copyright Permission

– A non-exclusive, irrevocable, royalty-free copyright
permission is granted by Rainer Doemer, CECS, to use this
material in developing all future revisions and editions of
the resulting draft and approved Accellera Systems
Initiative SystemC standard, and in derivative works based
on this standard.

Pushing the Limits of Standard-Compliant
Parallel SystemC Simulation

SystemC Evolution Day,
Oct. 31, 2019

(c) 2019 R. Doemer, CECS 2

Outline

4.

3.

2.

1.

SystemC Evolution Day, Oct. 31, 2019 (c) 2019 R. Doemer, CECS 3

Pushing the Limits of

Standard-Compliant

Parallel

SystemC Simulation

th0

1. SystemC Simulation

SystemC Evolution Day, Oct. 31, 2019 (c) 2019 R. Doemer, CECS 4

10:1
10:2

10:3

20:5
20:4

20:6

30:7

0:0
T:Δth4th2 th3th1• Discrete Event Simulation

(DES)
– Concurrent threads of execution

– Managed by a central scheduler

– Driven by events and time
advances

• Delta-cycle

• Time-cycle

 Partial temporal order
with barriers

• Example
– Accellera Proof-of-Concept

Simulator

 Sequential, slow!

Pushing the Limits of Standard-Compliant
Parallel SystemC Simulation

SystemC Evolution Day,
Oct. 31, 2019

(c) 2019 R. Doemer, CECS 3

2. Parallel SystemC Simulation

Seven Obstacles in the Way of Parallel SystemC Simulation (c) 2016 R. Doemer, CECS 5

10:1
10:2

10:3

20:5
20:4

20:6

30:7

0:0
T:Δth4th2 th3th1• Parallel Discrete Event Simulation

(PDES)
– Concurrent threads of execution

– Managed by a central scheduler

– Driven by events and time
advances

• Delta-cycle

• Time-cycle

 Synchronous parallelism

 Threads execute in parallel iff
• in the same delta cycle, and

• in the same time cycle

 Order of magnitude faster!

3. Standard-Compliant Parallel SystemC Simulation

• IEEE Standard 1666™-2011
– Revision of IEEE Std. 1666-2005

– Standard SystemC®

Language Reference Manual

…unfortunately stands in the way
of parallel SystemC simulation!

 SystemC Evolution Day 2016
 “Seven Obstacles in the Way

of Parallel SystemC Simulation”,
Rainer Doemer, Munich, Germany, May 2016.

 SystemC standard

… must embrace true parallelism

… must evolve in a major revision (3.x)

SystemC Evolution Day, Oct. 31, 2019 (c) 2019 R. Doemer, CECS 6

Pushing the Limits of Standard-Compliant
Parallel SystemC Simulation

SystemC Evolution Day,
Oct. 31, 2019

(c) 2019 R. Doemer, CECS 4

4. Pushing the Limits …

• While the SystemC standard has not changed,
my group has worked hard
 “Let’s make the best of it!”

• Goals
– Accept SystemC as it is (well, most of it)

– Build the best parallel SystemC simulator possible

– Aim for maximum compliance with the standard

 We took this risk, and created RISC!
 Recoding Infrastructure for SystemC

 RISC pushes the limits
to overcome the 7 obstacles …

SystemC Evolution Day, Oct. 31, 2019 (c) 2019 R. Doemer, CECS 7

Obstacle 1: Co-Routine Semantics

• Fact: IEEE 1666-2011 requires co-operative multitasking
 Quotes from Section “4.2.1.2 Evaluation phase” (pages 17, 18):

• Problem: Uninterrupted execution guarantee

• Proposal: Explicitly allow parallel execution, preemption
– Process instances at the same time (t,δ) may execute in parallel

• Model designer must write thread safe code, avoid race conditions

 Parallel systems, parallel models, parallel programming

Seven Obstacles in the Way of Parallel SystemC Simulation (c) 2016 R. Doemer, CECS 8

Since process instances execute without interruption, only a single process instance can be
running at any one time, […]. A process shall not pre-empt or interrupt the execution of another
process. This is known as co-routine semantics or co-operative multitasking.
[…]
The scheduler is not pre-emptive. An application can assume that a method process will execute
in its entirety without interruption, and a thread or clocked thread process will execute the code
between two consecutive calls to function wait without interruption.

An implementation running on a machine that provides hardware support for concurrent processes
may permit two or more processes to run concurrently, provided that the behavior appears identical
to the co-routine semantics defined in this subclause. In other words, the implementation would
be obliged to analyze any dependencies between processes and to constrain their execution to
match the co-routine semantics.

Pushing the Limits of Standard-Compliant
Parallel SystemC Simulation

SystemC Evolution Day,
Oct. 31, 2019

(c) 2019 R. Doemer, CECS 5

Pushing the Limits with RISC

• Obstacle 1:
Resolved!

 Introduce
a dedicated
SystemC
Compiler
 Automatic

analysis of
parallel
access
conflicts

 Run SystemC processes in parallel if there are no conflicts

 Faster simulation

 Results remain the same

SystemC Evolution Day, Oct. 31, 2019 (c) 2019 R. Doemer, CECS 9

Obstacle 2: Simulator State

• Fact: Discrete Event Simulation (DES) is presumed
 Example from IEEE 1666-2011, page 31: sysc/kernel/sc_simcontext.h

• Problem: Parallel Discrete Event Simulation (PDES)
is different from sequential DES

– After elaboration, there may be multiple running threads

– Scheduling may happen while some threads are still running

• Proposal: Carefully review simulator state primitives
and revise as needed for PDES

 Adapt the functions and APIs for parallel execution semantics

 The general notion of shared state needs attention…

Seven Obstacles in the Way of Parallel SystemC Simulation (c) 2016 R. Doemer, CECS 10

[...]
bool sc_pending_activity_at_current_time();
bool sc_pending_activity_at_future_time();
bool sc_pending_activity();
bool sc_time_to_pending_activity();
[...]

Pushing the Limits of Standard-Compliant
Parallel SystemC Simulation

SystemC Evolution Day,
Oct. 31, 2019

(c) 2019 R. Doemer, CECS 6

Pushing the Limits with RISC

• Obstacle 2:
Ongoing…

 Review and
revise the
SystemC API
 Slightly adjust

the semantics

 Maximize
compliance
with standard

 For APIs
on the slide:
User’s expectations can be met

 Example: SystemC Integration with Simics VP works fine

SystemC Evolution Day, Oct. 31, 2019 (c) 2019 R. Doemer, CECS 11

Obstacle 3: Lack of Thread Safety

• Fact: Primitives are generally not multi-thread safe
 Suspicious example from IEEE 1666-2011, page 194:

• Problem: Parallel execution may lead to race conditions
– Race conditions result in non-deterministic/undefined behavior

– Explicit protection (e.g. by mutex locks) is cumbersome

– Identifying problematic constructs is difficult
• Example: class sc_context, commented as “co-routine safe”

• Proposal: Require all primitives to be multi-thread safe
– Carefully revise the proof-of-concept SystemC library
 Encouraging item: async_request_update is thread-safe!

 See “5.15 sc_prim_channel”, IEEE 1666-2011, page 121

Seven Obstacles in the Way of Parallel SystemC Simulation (c) 2016 R. Doemer, CECS 12

[...]
sc_length_param length10(10);
sc_length_context cntxt10(length10); // length10 now in context
sc_int_base int_array[2]; // Array of 10-bit integers
[...]

Pushing the Limits of Standard-Compliant
Parallel SystemC Simulation

SystemC Evolution Day,
Oct. 31, 2019

(c) 2019 R. Doemer, CECS 7

Pushing the Limits with RISC

• Obstacle 3:
Ongoing…

 Revise
SystemC
primitives
for
multi-thread
safety
 Protection by

inserted locks

 Store state
in local or thread-local storage

 For deterministic debugging,
user can control number of parallel threads (e.g. set to 1)

SystemC Evolution Day, Oct. 31, 2019 (c) 2019 R. Doemer, CECS 13

Obstacle 4: Class sc_channel

• Fact: sc_channel is an alias type for sc_module
 IEEE 1666-2011, Section “5.2.23 sc_behavior and sc_channel” (page 56):

 systemc-2.3.1/include/sysc/kernel/sc_module.h

• Problem: Alias type is only another name, no new type
– Language does not distinguish modules and channels

 No separation of communication and computation
• Breaks a key system-level design principle…

• Proposal: Class sc_channel, derived from sc_module
Module encapsulates computation (hosts threads/processes)

Channel encapsulates communication (implemented interfaces)
Seven Obstacles in the Way of Parallel SystemC Simulation (c) 2016 R. Doemer, CECS 14

[...]
typedef sc_module sc_channel;
typedef sc_module sc_behavior;
[...]

The typedefs sc_behavior and sc_channel are provided for users to express their intent.
NOTE—There is no distinction between a behavior and a hierarchical channel
other than a difference of intent. Either may include both ports and public member functions.

Pushing the Limits of Standard-Compliant
Parallel SystemC Simulation

SystemC Evolution Day,
Oct. 31, 2019

(c) 2019 R. Doemer, CECS 8

Pushing the Limits with RISC

• Obstacle 4:
Fixed!

 Derive
sc_channel
from
base class
sc_module
 Minimal

change
in SystemC
headers

 Two different types at compile-time

 Easy distinction in static analysis

 No known negative side-effects

SystemC Evolution Day, Oct. 31, 2019 (c) 2019 R. Doemer, CECS 15

• Fact: Channel concept has disappeared
 “The Definitive Guide to SystemC: TLM-2.0 and the IEEE 1666-2011 Standard”,

Presentation by David Black, Doulos, at DAC’15 Training Day

• Problem:
Where is
the channel?

– Interface methods
are well-defined,
but not contained

– Separation of concerns
“Computation ≠

Communication”
principle is broken

– Proposal:
Encapsulate communication methods in channels

Obstacle 5: TLM-2.0

Seven Obstacles in the Way of Parallel SystemC Simulation (c) 2016 R. Doemer, CECS 16

Pushing the Limits of Standard-Compliant
Parallel SystemC Simulation

SystemC Evolution Day,
Oct. 31, 2019

(c) 2019 R. Doemer, CECS 9

Pushing the Limits with RISC

• Obstacle 5:
Reevaluated,
Resolved!

 Socket Call
Path (SCP)
analysis

 Variable
Entanglement
analysis
 Compile-time

analysis can
identify target methods executed by TLM-2.0 calls

 Support for interconnect modules and DMI
[CODES+ISSS’19, ACM TECS]

SystemC Evolution Day, Oct. 31, 2019 (c) 2019 R. Doemer, CECS 17

Obstacle 6: Sequential Mindset

• Fact: SC_METHOD is preferred over SC_THREAD,
context switches are considered overhead

 IEEE 1666-2011, Section 5.2.11 on threads (page 44):

• Problem: Sequential modeling is encouraged
– However, systems are parallel by nature, so should be models

– Avoiding context switches is the wrong optimization criterion

• Proposal: Use actual threads, eliminate SC_METHOD,
identify dependencies among threads

 Promote parallel mindset, with true thread-level parallelism
• Speed due to parallel execution, not due to fewer context switches

 Explicitly express task relations (use e.notify(), wait(e))

• Synchronize, communicate through events and channels

Seven Obstacles in the Way of Parallel SystemC Simulation (c) 2016 R. Doemer, CECS 18

Each thread or clocked thread process requires its own execution stack.
As a result, context switching between thread processes may impose a simulation overhead
when compared with method processes.

Pushing the Limits of Standard-Compliant
Parallel SystemC Simulation

SystemC Evolution Day,
Oct. 31, 2019

(c) 2019 R. Doemer, CECS 10

Pushing the Limits with RISC

• Obstacle 6:
Not a problem

 SC_METHOD,
SC_THREAD,
SC_CTHREAD
can all be
supported
 Static analysis

per
process type

 SC_METHOD
execution by dedicated invoker threads

 Nice optimization problem
for efficient grouping with minimal conflicts

SystemC Evolution Day, Oct. 31, 2019 (c) 2019 R. Doemer, CECS 19

Obstacle 7: Temporal Decoupling

• Fact: TD is designed to speed up sequential DES
 IEEE 1666-2011, Section 12.1 on “TLM-2.0 global quantum” (page 453):

– Abstraction trades off accuracy for higher simulation speed

• Problem: PDES is a different foundation than DES
– TD design assumptions are not necessarily true for PDES

– Global time quantum is a technical obstacle (race condition)

• Proposal: Reevaluate costs/benefits, redesign if needed
– Analyze TD idea for PDES, adopt advantages, drop drawbacks

• Avoid tlm_global_quantum, promote wait(time)

– Consider the use of a compiler to optimize scheduling, timing
• Out-of-Order PDES is one solution (fully automatic, accurate)

Seven Obstacles in the Way of Parallel SystemC Simulation (c) 2016 R. Doemer, CECS 20

Temporal decoupling permits SystemC processes to run ahead of simulation time for an amount
of time known as the time quantum and is associated with the loosely-timed coding style.
Temporal decoupling permits a significant simulation speed improvement
by reducing the number of context switches and events.

Pushing the Limits of Standard-Compliant
Parallel SystemC Simulation

SystemC Evolution Day,
Oct. 31, 2019

(c) 2019 R. Doemer, CECS 11

Pushing the Limits with RISC

• Obstacle 7:
TBD…

 Investigate in
future work

 Is there
any need
for this
abstraction
in PDES?
 Out-of-order

PDES
 Likely can achieve the same benefit

Without loss of accuracy

 Global time quantum (if needed) can be protected by mutex
SystemC Evolution Day, Oct. 31, 2019 (c) 2019 R. Doemer, CECS 21

Pushing the Limits with RISC

SystemC Evolution Day, Oct. 31, 2019 (c) 2019 R. Doemer, CECS 22

10:1
10:2

10:3

20:5
20:4

20:6

30:7

0:0
T:Δth4th2 th3th1• Out-of-Order Parallel DES

– Threads execute in parallel iff
• in the same delta cycle, and

• in the same time cycle,

• OR if there are no conflicts!

 Breaks synchronization barrier!

 Threads run as soon as possible,
even ahead of time

 Maximum speedup!
• Results at [DATE’12], [IEEE TCAD’14]

 Our approach preserves…
Cause and effect relationship

 Accuracy in results and timing

Maximum compliance with standard

Pushing the Limits of Standard-Compliant
Parallel SystemC Simulation

SystemC Evolution Day,
Oct. 31, 2019

(c) 2019 R. Doemer, CECS 12

RISC
OoO Parallel
Simulation

Out-of-order Parallel

(10x – 100x)

Recoding Infrastructure for SystemC

Traditional
SystemC

Simulation

Sequential

(1x)

SystemC Evolution Day, Oct. 31, 2019 (c) 2019 R. Doemer, CECS 23

C++
Compiler

Executable

Host PC

Accellera
Library

SystemC
Model

system
c.h

Header
File

RISC
Compiler

Parallel
Executable

Multi- / Many-
Core Host

RISC
Library

SystemC
Model

system
c.h

Header
File

• RISC Infrastructure
– Dedicated

RISC compiler
tool chain

– Compliance with
standard SystemC
semantics

– Open source
available
from CECS

 Out-of-order Parallel
Simulation
 Fully accurate

 Two orders of
magnitude
faster

212x speedup [DAC’17]

RISC
OoO Parallel
Simulation

Out-of-order Parallel

(10x – 100x)

Scaling RISC: File Hierarchies, 3rd Party IP

Traditional
SystemC

Simulation

Sequential

(1x)

SystemC Evolution Day, Oct. 31, 2019 (c) 2019 R. Doemer, CECS 24

Scalable RISC
OoO Parallel
Simulation

Out-of-order Parallel
(10x – 100x)

Component Libraries
3rd Party IP

C++
Compiler

Executable

Host PC

Accellera
Library

SystemC
Model

system
c.h

Header
File

RISC
Compiler

Parallel
Executable

Multi- / Many-
Core Host

RISC
Library

SystemC
Model

system
c.h

Header
File

RISC
Compiler

Combined
Parallel

Executable

Multi- / Many-
Core Host

RISC
Library

SystemC
Top

system
c.h

Comp.
NComp.
1Comp
.h

3rd Party
Library3rd Party
Library3rd Party
Library

Component
LibraryComponent
LibraryComponent
Library

IP 1
IP 1
IP.h

IP Integration
and Protection

Frontend Tools,
CoFluent™ Studio

Frontend Tools
Integration

New Support for
Partial Segment
Graphs (PSG)

Pushing the Limits of Standard-Compliant
Parallel SystemC Simulation

SystemC Evolution Day,
Oct. 31, 2019

(c) 2019 R. Doemer, CECS 13

Scaling RISC: Support for TLM-2.0

• Various Modeling Styles Supported by RISC v0.6.0

SystemC Evolution Day, Oct. 31, 2019 (c) 2019 R. Doemer, CECS 25

Structural Composition Synchronization Connectivity

Explicit Memories Interconnect Modules DMI

Scaling RISC: Analysis and Transformation

• Example: Model Visualization
– Hierarchy and connectivity

• Ports and sockets

– Threads in modules

SystemC Evolution Day, Oct. 31, 2019 (c) 2019 R. Doemer, CECS 26

Pushing the Limits of Standard-Compliant
Parallel SystemC Simulation

SystemC Evolution Day,
Oct. 31, 2019

(c) 2019 R. Doemer, CECS 14

RISC Open Source

• RISC Compiler and Simulator, Release V0.6.0
 http://www.cecs.uci.edu/~doemer/risc.html#RISC060

• Installation notes and script: INSTALL, Makefile

• Open source tar ball: risc_v0.6.0.tar.gz

• Docker script and container: Dockerfile

• Doxygen documentation: RISC API, OOPSC API
• Tool manual pages: risc, simd, visual, …

• BSD license terms: LICENSE

– Companion Technical Report
• CECS Technical Report 19-04: CECS_TR_19_04.pdf

 Docker container:
 https://hub.docker.com/r/ucirvinelecs/risc060/

SystemC Evolution Day, Oct. 31, 2019 (c) 2019 R. Doemer, CECS 27

bash# docker pull ucirvinelecs/risc060
bash# docker run -it ucirvinelecs/risc060
[dockeruser]# cd demodir
[dockeruser]# make play_demo

Conclusion

• Overcoming Obstacles towards Parallel SystemC
1. Co-Routine Semantics: Resolved
2. Simulator State: Ongoing…
3. Lack of Thread Safety: Ongoing…
4. Class sc_channel: Fixed
5. TLM-2.0: Reevaluated, Resolved
6. Sequential Mindset: Not a problem
7. Temporal Decoupling: TBD…

• Recoding Infrastructure for SystemC
– Introduction of a dedicated SystemC compiler

– Out-of-order parallel simulation on multi- and many-core hosts

– Maximum compliance with IEEE SystemC semantics

• Open Source
– Thanks to Intel Corporation!

SystemC Evolution Day, Oct. 31, 2019 (c) 2019 R. Doemer, CECS 28

Pushing the Limits of Standard-Compliant
Parallel SystemC Simulation

SystemC Evolution Day,
Oct. 31, 2019

(c) 2019 R. Doemer, CECS 15

References (1)

• [IESS’19a] Z. Cheng, T. Schmidt, R. Dömer: "Enabling IP Reuse and
Protection in Out-of-Order Parallel SystemC Simulation", Proceedings
of IESS, Springer, Friedrichshafen, Germany, Sep. 2019.

• [IESS’19b] E. Arasteh, R. Dömer: “An Untimed SystemC Model of
GoogLeNet", Proceedings of IESS, Springer, Friedrichshafen,
Germany, Sep. 2019.

• [CODES+ISSS’19] Z. Cheng, R. Dömer: "Analyzing Variable
Entanglement for Parallel Simulation of SystemC TLM-2.0 Models",
accepted at CODES+ISSS, New York, Oct. 2019.

 Reprint to appear as journal article in
ACM Transactions on Embedded Computer Systems!

• [DVCon’19] D. Mendoza, A. Dingankar, Z. Cheng, R. Dömer:
"Integrating Parallel SystemC Simulation into Simics® Virtual Platform",
accepted at DVCon Europe, Munich, Germany, Oct. 2019.

• [ASPDAC’20] Z. Cheng, A. Arasteh, R. Dömer: “Event Delivery using
Prediction for Faster Parallel SystemC Simulation", accepted at
ASPDAC, Beijing, China, Jan. 2020.

SystemC Evolution Day, Oct. 31, 2019 (c) 2019 R. Doemer, CECS 29

References (2)

• [HLDVT’17] Z. Cheng, T. Schmidt, G. Liu, R. Dömer: "Thread- and
Data-Level Parallel Simulation in SystemC, a Bitcoin Miner Case
Study", Proceedings of HLDVT, Santa Cruz, California, Oct. 2017.

• [CECS’17] D. Mendoza, R. Dömer: "A Tool for Visualization of
SystemC Models", CECS Technical Report 17-06, Nov. 2017.

• [DATE’18] T. Schmidt, Z. Cheng, R. Dömer: "Port Call Path Sensitive
Conflict Analysis for Instance-Aware Parallel SystemC Simulation",
Proceedings of DATE, Dresden, Germany, March 2018.

• [FDL’18] Z. Cheng, T. Schmidt, R. Dömer: "SystemC Coding Guideline
for Faster Out-of-Order Parallel Discrete Event Simulation",
Proceedings of FDL, Munich, Germany, Sep. 2018.

• [CECS’18] G. Liu, T. Schmidt, Z. Cheng, D. Mendoza, R. Dömer: "RISC
Compiler and Simulator, Release V0.5.0: Out-of-Order Parallel
Simulatable SystemC Subset", CECS TR 18-03, Sep. 2018.

• [TCAD’TBD] T. Schmidt, Z. Cheng, G. Liu, D. Mendoza, A. Dingankar,
R. Dömer: "RISC: A Static Analysis Framework for Parallel Simulation
of SystemC", submitted to IEEE Transactions on CAD.

SystemC Evolution Day, Oct. 31, 2019 (c) 2019 R. Doemer, CECS 30

Pushing the Limits of Standard-Compliant
Parallel SystemC Simulation

SystemC Evolution Day,
Oct. 31, 2019

(c) 2019 R. Doemer, CECS 16

References (3)

• [DATE’18] T. Schmidt, Z. Cheng, R. Dömer: "Port Call Path Sensitive Conflict Analysis for
Instance-Aware Parallel SystemC Simulation", Proceedings of DATE, Dresden, Germany,
March 2018.

• [DAC’17] T. Schmidt, G. Liu, R. Dömer: "Towards Ultimate Parallel SystemC Simulation
through Thread and Data Level Parallelism", Proceedings DAC, Austin, TX, June 2017.

• [Springer’17] R. Dömer, G. Liu, T. Schmidt: "Parallel Simulation", chapter 17 in "Handbook of
Hardware/Software Codesign" by S. Ha and J. Teich, Springer Netherlands, June 2016.

• [ASPDAC’17] T. Schmidt, G. Liu, R. Dömer: "Hybrid Analysis of SystemC Models for Fast and
Accurate Parallel Simulation", Proceedings ASPDAC, Tokyo, Japan, January 2017.

• [IEEE ESL’16] R. Dömer: "Seven Obstacles in the Way of Standard-Compliant Parallel
SystemC Simulation", IEEE Embedded Systems Letters, vol. 8, no. 4, pp. 81-84, Dec. 2016.

• [DAC’15] R. Dömer: “Towards Parallel Simulation of Multi-Domain System Models", Keynote,
DAC workshop on System-to-Silicon Performance Modeling and Analysis, June 2015.

• [IEEE TCAD’14] W. Chen, X. Han, C. Chang, G. Liu, R. Dömer: "Out-of-Order Parallel
Discrete Event Simulation for Transaction Level Models",
IEEE Transactions on CAD, vol. 33, no. 12, pp. 1859-1872, December 2014.

• [DATE’14] W. Chen, X. Han, R. Dömer: "May-Happen-in-Parallel Analysis based on Segment
Graphs for Safe ESL Models", Proceedings of DATE, Dresden, Germany, March 2014.

• [DATE’13] W. Chen, R. Dömer: "Optimized Out-of-Order Parallel Discrete Event Simulation
Using Predictions", Proceedings of DATE, Grenoble, France, March 2013.

• [DATE’12] W. Chen, X. Han, R. Dömer: "Out-of-Order Parallel Simulation for ESL Design",
Proceedings of DATE, Dresden, Germany, March 2012.

SystemC Evolution Day, Oct. 31, 2019 (c) 2019 R. Doemer, CECS 31

Acknowledgments

• For solid work, fruitful discussions, and honest feedback,
I would like to thank:

– My team at UCI
• Zhongqi Cheng, Daniel Mendoza, Emad Arasteh

• Tim Schmidt, Guantao Liu

• Farah Arabi, Spencer Kam

– Our collaborators at Intel
• Ajit Dingankar

• Desmond Kirkpatrick

• Abhijit Davare

• Philipp Hartmann

– And many others…

• This work has been supported in part by substantial funding
from Intel Corporation. Thank you!

SystemC Evolution Day, Oct. 31, 2019 (c) 2019 R. Doemer, CECS 32

