
On the Limits of Standard-compliant Parallel
Simulation of the IEEE SystemC Language

FDL'18 Keynote,
Munich, Germany

(c) 2018 R. Doemer, CECS 1

On the Limits of
Standard-compliant Parallel Simulation

of the IEEE SystemC Language

Forum on specification & Design Languages

Keynote

Rainer Dömer
doemer@uci.edu

Center for Embedded and Cyber-Physical Systems

University of California, Irvine

IEEE Standard 1666-2011

• The SystemC Language
– official standard

– de-facto standard

• for
– modeling

– simulation

• of systems containing
– hardware

– software

 Keynote Focus
 Parallelism in models

 Parallelism in simulation

 Standard compliance

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 2

On the Limits of Standard-compliant Parallel
Simulation of the IEEE SystemC Language

FDL'18 Keynote,
Munich, Germany

(c) 2018 R. Doemer, CECS 2

Discrete Event Simulation (DES)

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 3

10:1
10:2

10:3

20:5
20:4

20:6

30:7

0:0
T:Δth4th2 th3th1• SystemC uses DES

– Concurrent threads of execution

– Managed by a central scheduler

– Driven by events and time advances
• Delta cycle

• Time cycle

 Partial temporal order with barriers

• Accellera Reference Simulator
– Proof-of-concept implementation

of IEEE 1666-2011 standard

 A single thread is active at any time
Does not exploit parallelism

Cannot utilize multiple cores

 Sequential simulation is slow

Approaches for Faster Simulation

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 4

Sequential DE
simulation is slow

Improved Modeling Techniques
•Transaction-level modeling (TLM)
•TLM temporal decoupling
•Savoiu et al. [MEMOCODE’05]
•Razaghi et al.[ASPDAC’12]

Hardware-based Acceleration
•Sirowy et al. [DAC’10]
•Nanjundappa et al. [ASPDAC’10]
•Sinha et al. [ASPDAC’12]

SMP Parallel Simulation
•Fujimoto [CACM’90]
•Chopard et al. [ICCS’06]
•Ezudheen et al. [PADS’09]
•Mello et al. [DATE’10]
•Schumacher et al. [CODES’11]
•Chen et al. [TCAD’14]
•Yun et al. [TCAD’12]
•Schmidt et al. [DAC’17]
•and many others

Distributed Simulation
•Chandy et al. [TSE’79]
•Huang et al. [SIES’08]
•Chen et al. [CECS’11]

On the Limits of Standard-compliant Parallel
Simulation of the IEEE SystemC Language

FDL'18 Keynote,
Munich, Germany

(c) 2018 R. Doemer, CECS 3

Parallel Discrete Event Simulation (PDES)

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 5

10:1
10:2

10:3

20:5
20:4

20:6

30:7

0:0
T:Δth4th2 th3th1• Parallel DES [Fujimoto1990]

– Threads execute in parallel iff
• in the same delta cycle, and

• in the same time cycle

 Order of magnitude speed up!

 Problem solved!?
Not quite!

 What about host platforms?
Multi- and many-core hosts

are readily available

 What about accuracy?
 Is achievable with careful analysis

 What about standard compliance?
 That’s where the problem is!

Problem Definition

• Given
– Embedded systems are parallel

– SystemC is suitable and popular for system design

– Models exhibit explicit thread-level parallelism

– Multi- and many-core host platforms are readily available

• Design
– Fast Parallel Discrete Event Simulation

– For the SystemC language

• Optimize
– Maximize compliance with the IEEE 1666-2011 standard

 Why is this difficult?
 7 Obstacles stand in the way of standard-compliant

parallel SystemC simulation [ESL’16]

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 6

On the Limits of Standard-compliant Parallel
Simulation of the IEEE SystemC Language

FDL'18 Keynote,
Munich, Germany

(c) 2018 R. Doemer, CECS 4

Obstacle 1: Co-Routine Semantics

• Fact: IEEE 1666-2011 requires co-operative multitasking
 Quotes from Section “4.2.1.2 Evaluation phase” (pages 17, 18):

• Problem: Uninterrupted execution guarantee

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 7

Since process instances execute without interruption, only a single process instance can be
running at any one time, […]. A process shall not pre-empt or interrupt the execution of another
process. This is known as co-routine semantics or co-operative multitasking.
[…]
The scheduler is not pre-emptive. An application can assume that a method process will execute
in its entirety without interruption, and a thread or clocked thread process will execute the code
between two consecutive calls to function wait without interruption.

An implementation running on a machine that provides hardware support for concurrent processes
may permit two or more processes to run concurrently, provided that the behavior appears identical
to the co-routine semantics defined in this subclause. In other words, the implementation would
be obliged to analyze any dependencies between processes and to constrain their execution to
match the co-routine semantics.

Parallel Discrete Event Simulation (PDES)

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 8

10:1
10:2

10:3

20:5
20:4

20:6

30:7

0:0
T:Δth4th2 th3th1• Parallel DES [Fujimoto 1990]

– Threads execute in parallel iff
• in the same delta cycle, and

• in the same time cycle

 Order of magnitude speed up!

 IEEE 1666 Requirement:
“The scheduler is not pre-emptive.”

 SystemC: guaranteed safe!

 PDES: not safe! (race condition)

int x; // shared variable

void thread1() void thread2()
{ x = 0; { x = 7;

x = x + 1; x = x * 6;
cout << x; cout << x;

} }

On the Limits of Standard-compliant Parallel
Simulation of the IEEE SystemC Language

FDL'18 Keynote,
Munich, Germany

(c) 2018 R. Doemer, CECS 5

Obstacle 1: Co-Routine Semantics

• Fact: IEEE 1666-2011 requires co-operative multitasking
 Quotes from Section “4.2.1.2 Evaluation phase” (pages 17, 18):

• Problem: Uninterrupted execution guarantee

• Proposal: Explicitly allow parallel execution, preemption
– Processes at the same time (T,Δ) may execute in parallel

• Model designer must write thread safe code, avoid race conditions

 Parallel systems, parallel models, parallel programming

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 9

Since process instances execute without interruption, only a single process instance can be
running at any one time, […]. A process shall not pre-empt or interrupt the execution of another
process. This is known as co-routine semantics or co-operative multitasking.
[…]
The scheduler is not pre-emptive. An application can assume that a method process will execute
in its entirety without interruption, and a thread or clocked thread process will execute the code
between two consecutive calls to function wait without interruption.

An implementation running on a machine that provides hardware support for concurrent processes
may permit two or more processes to run concurrently, provided that the behavior appears identical
to the co-routine semantics defined in this subclause. In other words, the implementation would
be obliged to analyze any dependencies between processes and to constrain their execution to
match the co-routine semantics.

Obstacle 2: Simulator State

• Fact: Discrete Event Simulation (DES) is presumed
 Example from IEEE 1666-2011, page 31: sysc/kernel/sc_simcontext.h

• Problem: Parallel Discrete Event Simulation (PDES)
is different from sequential DES

– After elaboration, there may be multiple running threads

– Scheduling may happen while some threads are still running

• Proposal: Carefully review simulator state primitives
and revise as needed for PDES

 Adapt the functions and APIs for parallel execution semantics

 Entire accessible simulator state needs attention…

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 10

[...]
bool sc_pending_activity_at_current_time();
bool sc_pending_activity_at_future_time();
bool sc_pending_activity();
bool sc_time_to_pending_activity();
[...]

On the Limits of Standard-compliant Parallel
Simulation of the IEEE SystemC Language

FDL'18 Keynote,
Munich, Germany

(c) 2018 R. Doemer, CECS 6

Obstacle 2: Simulator State

• Fact: Discrete Event Simulation (DES) is presumed

• Problem: Parallel Discrete Event Simulation (PDES)
is different from sequential DES

• Proposal: Carefully review simulator state primitives
and revise as needed for PDES

 Entire accessible simulator state needs attention

 Special consideration for very strict semantics, e.g. debugging:
Quote from IEEE 1666-2011, Section “4.2.1.2 Evaluation phase” (page 17):

 Sequential DES can remain valid as a special case of PDES
While PDES typically runs up to n threads in parallel,

where n = number of cores on the host,
we can set n = 1 to mimic the classic DES case

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 11

The order in which process instances are selected from the set of runnable processes is
implementation defined. However, if a specific version of a specific implementation runs
a specific application using a specific input data set, the order of process execution shall
not vary from run to run.

Obstacle 3: Lack of Thread Safety

• Fact: Primitives are generally not multi-thread safe
 Suspicious example from IEEE 1666-2011, page 194:

• Problem: Parallel execution may lead to race conditions
– Race conditions result in non-deterministic/undefined behavior

– Explicit protection (e.g. by mutex locks) is cumbersome

– Identifying problematic constructs is difficult
• Example: class sc_context, commented as “co-routine safe”

• Proposal: Require all primitives to be multi-thread safe
– Carefully revise the proof-of-concept SystemC library
 Encouraging item: async_request_update is thread-safe!

 See “5.15 sc_prim_channel”, IEEE 1666-2011, page 121

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 12

[...]
sc_length_param length10(10);
sc_length_context cntxt10(length10); // length10 now in context
sc_int_base int_array[2]; // Array of 10-bit integers
[...]

On the Limits of Standard-compliant Parallel
Simulation of the IEEE SystemC Language

FDL'18 Keynote,
Munich, Germany

(c) 2018 R. Doemer, CECS 7

Obstacle 4: Class sc_channel

• Fact: sc_channel is an alias type for sc_module
 IEEE 1666-2011, Section “5.2.23 sc_behavior and sc_channel” (page 56):

 systemc-2.3.1/include/sysc/kernel/sc_module.h

• Problem: Alias type is only another name, no new type
– Language does not distinguish modules and channels

 No separation of communication and computation
• Breaks a key system-level design principle…

• Proposal: Class sc_channel, derived from sc_module
Module encapsulates computation (hosts threads/processes)

Channel encapsulates communication (implemented interfaces)
FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 13

[...]
typedef sc_module sc_channel;
typedef sc_module sc_behavior;
[...]

The typedefs sc_behavior and sc_channel are provided for users to express their intent.
NOTE—There is no distinction between a behavior and a hierarchical channel
other than a difference of intent. Either may include both ports and public member functions.

template <class T> inline
void sc_fifo<T>::write(const T& val_)
{

while(num_free() == 0) {
sc_core::wait(m_data_read_event);

}
m_num_written ++;
buf_write(val_);
request_update();

}

Obstacle 4: Class sc_channel

• Proposal: Class sc_channel, derived from sc_module
Module encapsulates computation (hosts threads/processes)

Channel encapsulates communication (implemented interfaces)

 Q: Why do we need channels? A: Thread safe communication!
– Example: Blocking write in primitive channel sc_fifo.h

Race condition between num_free and m_num_written

 Prevented by locking m_mutex of this channel instance

– Channel acts as a monitor for multi-thread safe communication

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 14

template <class T> inline
void sc_fifo<T>::write(const T& val_)
{ sc_stacked_lock l(m_mutex); // lock the channel mutex

while(num_free() == 0) {
sc_core::wait(m_data_read_event);

}
m_num_written ++;
buf_write(val_);
request_update();

}

On the Limits of Standard-compliant Parallel
Simulation of the IEEE SystemC Language

FDL'18 Keynote,
Munich, Germany

(c) 2018 R. Doemer, CECS 8

• Fact: Channel concept has disappeared
 “The Definitive Guide to SystemC: TLM-2.0 and the IEEE 1666-2011 Standard”,

Presentation by David Black, Doulos, at DAC’15 Training Day

• Problem:
Where is
the channel?

Obstacle 5: TLM-2.0

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 15

• Fact: Channel concept has disappeared
 “The Definitive Guide to SystemC: TLM-2.0 and the IEEE 1666-2011 Standard”,

Presentation by David Black, Doulos, at DAC’15 Training Day

• Problem:
Where is
the channel?

– Interface methods
are well-defined,
but not contained

– Separation of concerns
“Computation ≠

Communication”
principle is broken

Obstacle 5: TLM-2.0

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 16

On the Limits of Standard-compliant Parallel
Simulation of the IEEE SystemC Language

FDL'18 Keynote,
Munich, Germany

(c) 2018 R. Doemer, CECS 9

• Fact: Channel concept has disappeared
 “The Definitive Guide to SystemC: TLM-2.0 and the IEEE 1666-2011 Standard”,

Presentation by David Black, Doulos, at DAC’15 Training Day

• Problem:
Where is
the channel?

– Interface methods
are well-defined,
but not contained

– Separation of concerns
“Computation ≠

Communication”
principle is broken

– Naïve Proposal:
Encapsulate communication methods in channels

Obstacle 5: TLM-2.0

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 17

sc_channel
tlm_bw_transport<>

sc_channel
tlm_fw_transport<>

Channels encapsulate communication on fw and bw paths

Connected by Channels

U
p

g
ra

d
e

d
 b

y
R

a
in

e
r

D
o

e
m

e
r

(C
E

C
S

). Channels cannot fix this.

Threads execute in foreign territory
and can bypass border protection by DMI.

This problem needs more thought…
(we will revisit this later)

Obstacle 6: Sequential Mindset

• Fact: SC_METHOD is preferred over SC_THREAD,
context switches are considered overhead

 IEEE 1666-2011, Section 5.2.11 on threads (page 44):

• Problem: Sequential modeling is encouraged
– However, systems are parallel by nature, so should be models

– Avoiding context switches is the wrong optimization criterion

• Proposal: Use actual threads, avoid SC_METHOD,
identify dependencies among threads

 Promote parallel mindset, with true thread-level parallelism
• Speed due to parallel execution, not due to fewer context switches

 Explicitly express task relations (use e.notify(), wait(e))

• Synchronize, communicate through events and channels

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 18

Each thread or clocked thread process requires its own execution stack.
As a result, context switching between thread processes may impose a simulation overhead
when compared with method processes.

On the Limits of Standard-compliant Parallel
Simulation of the IEEE SystemC Language

FDL'18 Keynote,
Munich, Germany

(c) 2018 R. Doemer, CECS 10

Obstacle 7: Temporal Decoupling

• Fact: TD is designed to speed up sequential DES
 IEEE 1666-2011, Section 12.1 on “TLM-2.0 global quantum” (page 453):

– Abstraction trades off accuracy for higher simulation speed

• Problem: PDES is a different foundation than DES
– TD design assumptions are not necessarily true for PDES

– Global time quantum is a technical obstacle (race condition)

• Proposal: Reevaluate costs/benefits, redesign if needed
– Analyze TD idea for PDES, adopt advantages, drop drawbacks

• Avoid tlm_global_quantum, promote wait(time)

– Consider the use of a compiler to optimize scheduling, timing
• Out-of-Order PDES [TCAD’14] is one solution…

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 19

Temporal decoupling permits SystemC processes to run ahead of simulation time for an amount
of time known as the time quantum and is associated with the loosely-timed coding style.
Temporal decoupling permits a significant simulation speed improvement
by reducing the number of context switches and events.

Now what?

 Seven Obstacles stand in the Way
of Standard-Compliant Parallel SystemC Simulation
• Truly parallel and truly compliant SystemC appears elusive

given the current IEEE standard

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 20

On the Limits of Standard-compliant Parallel
Simulation of the IEEE SystemC Language

FDL'18 Keynote,
Munich, Germany

(c) 2018 R. Doemer, CECS 11

SystemC Evolution?

 Seven Obstacles stand in the Way
of Standard-Compliant Parallel SystemC Simulation
– SystemC Evolution Day 2016 [IEEE ESL’16]

 Let’s overcome the identified 7 obstacles!
– Move up from DES to PDES

– Adopt a parallel mindset, expose and exploit parallelism

– Apply the principle of separation of concerns
• Modules encapsulate computation

• Channels encapsulate communication

– Simulate models faster with parallel execution semantics

 SystemC must evolve in a major revision (3.x)
– C++11 already has built-in support for multithreading

– SystemC must embrace true parallelism

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 21

Maximum Compliance with Standard

 Seven Obstacles stand in the Way
of Standard-Compliant Parallel SystemC Simulation
– SystemC Evolution Day 2016 [IEEE ESL’16]

 In absence of major changes to SystemC standard,
let’s make the best of it
– Accept SystemC as it is (well, most of it)

– Build the best parallel SystemC simulator possible

– Aim for maximum compliance with the standard

 We took this risk, and created RISC!

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 22

On the Limits of Standard-compliant Parallel
Simulation of the IEEE SystemC Language

FDL'18 Keynote,
Munich, Germany

(c) 2018 R. Doemer, CECS 12

Recoding Infrastructure for SystemC (RISC)

• Advanced Parallel SystemC Simulation
– Aggressive PDES on many-core host platforms

– Maximum compliance with IEEE SystemC semantics

• Introduction of a Dedicated SystemC Compiler
– Advanced conflict analysis for safe parallel execution

– Automatic model instrumentation and code generation

• Parallel SystemC Simulator
– Out-of-order parallel scheduler, multi-thread safe primitives

– Multi- and many-core host platforms (e.g. Intel® Xeon Phi™)

• Open Source
– Freely available for evaluation and collaboration

– Thanks to Intel Corporation!

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 23

Recoding Infrastructure for SystemC (RISC)

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 24

10:1
10:2

10:3

20:5
20:4

20:6

30:7

0:0
T:Δth4th2 th3th1• Out-of-Order Parallel DES

– Threads execute in parallel iff
• in the same delta cycle, and

• in the same time cycle,

• OR if there are no conflicts!

 Breaks synchronization barrier!

 Threads run as soon as possible,
even ahead of time.

 Significantly higher speedup!
• Results at [DATE’12], [IEEE TCAD’14]

 RISC compiler fully preserves…
Cause and effect relationship

 Accuracy in results and timing

On the Limits of Standard-compliant Parallel
Simulation of the IEEE SystemC Language

FDL'18 Keynote,
Munich, Germany

(c) 2018 R. Doemer, CECS 13

Recoding Infrastructure for SystemC (RISC)

• Out-of-Order PDES Key Ideas
1. Dedicated SystemC compiler with advanced model analysis

 Static conflict analysis based on Segment Graphs

2. Parallel simulator with out-of-order scheduling
 Fast decision making at run-time, optimized mapping

• Fundamental Data Structure: Segment Graph
– Key to semantics-compliant out-of-order execution [DATE’12]

– Key to prediction of future thread state [DATE’13]
• “Optimized Out-of-Order Parallel DE Simulation Using Predictions”

– Key to May-Happen-in-Parallel Analysis [DATE’14]
• “May-Happen-in-Parallel Analysis based on Segment Graphs

for Safe ESL Models“ (Best Paper Award)

– Combined: “OoO PDES for TLM” [IEEE TCAD’14]
• Comprehensive summary with HybridThreads extension

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 25

Dedicated SystemC Compiler

• RISC Software Stack
 Recoding Infrastructure for SystemC

– C/C++ foundation

– ROSE compiler (from LLNL)

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 26

RISC

C/C++ Foundation

ROSE IR

• ROSE Internal Representation

• Explicit support for

• Source code analysis

• Source-to-source
transformations

Source:
Lawrence Livermore National Laboratory (LLNL)

On the Limits of Standard-compliant Parallel
Simulation of the IEEE SystemC Language

FDL'18 Keynote,
Munich, Germany

(c) 2018 R. Doemer, CECS 14

Dedicated SystemC Compiler

• RISC Software Stack
 Recoding Infrastructure for SystemC

– SystemC Internal
Representation

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 27

RISC

C/C++ Foundation

ROSE IR

SystemC IR

• Class hierarchy to represent
SystemC objects

Dedicated SystemC Compiler

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 28

RISC

Segment Graph

C/C++ Foundation

ROSE IR

SystemC IR

• RISC Software Stack
 Recoding Infrastructure for SystemC

1) Segment Graph

2) Parallel access conflict analysis

Compilation,
Simulation

SystemC Compiler

RISCsystemc.h

Model.cpp

Segment Graph
Construction

Parallel Access
Conflict Analysis

…
Model

_par.cpp

SystemC Model Parallel
C++ Model

Seg 2

Seg 1

Seg 3

Seg 4 Seg 5

Seg 6

Segment Graph

Step 1: Build a Segment Graph

On the Limits of Standard-compliant Parallel
Simulation of the IEEE SystemC Language

FDL'18 Keynote,
Munich, Germany

(c) 2018 R. Doemer, CECS 15

Dedicated SystemC Compiler

• Segment Graph
– Segment Graph is a directed graph

• Nodes: Segments

Code statements executed
between two scheduling steps

– Expression statements
– Control flow statements (if, while, …)

– Function calls

• Edges: Segment boundaries

 Primitives that trigger scheduler entry
– wait(event)

– wait(time)

 Segment Graph is built automatically by the compiler [TCAD’14]
• From the model source code

• Via Abstract Syntax Tree and Control Flow Graph

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 29

Seg 2

Seg 1

Seg 3

Seg 4 Seg 5

Seg 6

Segment Graph

Step 2:
Perform Conflict Analysis

Dedicated SystemC Compiler

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 30

RISC

Segment Graph

C/C++ Foundation

ROSE IR

SystemC IR

• RISC Software Stack
 Recoding Infrastructure for SystemC

1) Segment Graph construction

2) Parallel access conflict analysis

3) Model instrumentation

Compilation,
Simulation

SystemC Compiler

RISCsystemc.h

Model.cpp

Segment Graph
Construction

Parallel Access
Conflict Analysis

…
Model

_par.cpp

SystemC Model Parallel
C++ Model

Seg 2

Seg 1

Seg 3

Seg 4 Seg 5

Seg 6

Segment Graph

Conflict Seg 1 Seg 2 Seg 3

Seg 1 True

Seg 2 True True

Seg 3 True

Seg 3
R: a, b
W: x, y
RW:

Seg 2
R: a, b
W: x
RW: z

Instrumentation!

On the Limits of Standard-compliant Parallel
Simulation of the IEEE SystemC Language

FDL'18 Keynote,
Munich, Germany

(c) 2018 R. Doemer, CECS 16

Dedicated SystemC Compiler

• Segment Conflict Analysis
– Need to comply with SystemC LRM [IEEE Std 1666™]

• Cooperative (or co-routine) multitasking semantics
– “process instances execute without interruption”

– System designer “can assume that a method process
will execute in its entirety without interruption”

 A parallel implementation “would be obliged
to analyze any dependencies between processes and
constrain their execution to match the co-routine semantics.”

– Must avoid race conditions when using shared variables!
 Prevent conflicting segments to be scheduled in parallel

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 31

Conflict Seg 1 Seg 2 Seg 3

Seg 1 True

Seg 2 True True

Seg 3 True

Seg 3
R: a, b
W: x, y
RW:

Seg 2
R: a, b
W: x
RW: z

SystemC Compiler and Simulator

• Compiler and Simulator work hand in hand
– Compiler performs conservative static analysis

– Analysis results are passed to the simulator

– Simulator can make safe scheduling decisions quickly

 Automatic Model Instrumentation
 Static analysis results are inserted into the source code

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 32

RISC Simulator

C++
Compiler

Out-of-Order
Parallel

Simulation

SystemC Compiler

RISCsystemc.h

Model.cpp

… Source Code
Instrumentation

systemc
_par.h

Model
_par.cpp

Input Model

Parallel
SystemC
Library

Parallel
C++ Model

Model Instrumentation:
Segment and Instance IDs
Segment Conflict Tables

Time Advance Tables

On the Limits of Standard-compliant Parallel
Simulation of the IEEE SystemC Language

FDL'18 Keynote,
Munich, Germany

(c) 2018 R. Doemer, CECS 17

• Simulator kernel with Out-of-Order Parallel Scheduler
– Conceptual OoO PDES execution

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 33

Parallel SystemC Simulator

Issue
Threads

Issue threads…

• truly in parallel and out-of-order

• whenever they are ready

• and have no conflicts!

 Fast conflict table lookup

 Optimized thread-to-core
mapping

Experiments and Results

• DVD Player Example
– Parallel video and audio decoding with different frame rates

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 34

Video
30 FPS

2 Audio Channels
38.28 FPS

Multimedia
input

stream

DUT

Video
Codec

Left
Audio
Codec

Right
Audio
Codec

DUT
Video

Monitor
Left

Speaker
Right

Speaker

Stimulus

1: SC_MODULE(VideoCodec)
2: { sc_port<i_receiver> p1;
3: sc_port<i_sender> p2;
4: …
5: while(1) {
6: p1->receive(&inFrm);
7: outFrm = decode(inFrm);
8: wait(33330, SC_US);
9: p2->send(outFrm);

10: }
11: };

1: SC_MODULE(AudioCodec)
2: { sc_port<i_receiver> p1;
3: sc_port<i_sender> p2;
4: …
5: while(1) {
6: p1->receive(&inFrm);
7: outFrm = decode(inFrm);
8: wait(26120, SC_US);
9: p2->send(outFrm);

10: }
11: };

On the Limits of Standard-compliant Parallel
Simulation of the IEEE SystemC Language

FDL'18 Keynote,
Munich, Germany

(c) 2018 R. Doemer, CECS 18

Experiments and Results

• DVD Player Example
– Parallel video and audio decoding

with different frame rates

1. Real time schedule: fully parallel

2. Reference simulator schedule (DES)

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 35

0 26.12

33.33

52.25

66.67

78.38

100

Frame 1 Frame 2 Frame 3

LF 1
RF 1

LF 2
RF 2

LF 3
RF 3

LF 4
RF 4

Time [ms]

Video

Left
Right

Video

Left
Right

0

33.33 66.67

78.38

100

Frame 3Frame 1 Frame 2

LF 1
RF 1

LF 2
RF 2

LF 3
RF 3

Time [ms] …52.2526.12

LF 4

DUT

Video
Codec

Left
Audio
Codec

Right
Audio
Codec

DUT
Video

Monitor
Left

Speaker
Right

Speaker

Stimulus

Experiments and Results

• DVD Player Example
– Parallel video and audio decoding

with different frame rates

1. Real time schedule: fully parallel

3. Synchronous parallel schedule (PDES)

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 36

0 26.12

33.33

52.25

66.67

78.38

100

Frame 1 Frame 2 Frame 3

LF 1
RF 1

LF 2
RF 2

LF 3
RF 3

LF 4
RF 4

Time [ms]

Video

Left
Right

0 26.12

33.33 66.67

78.38

100

Frame 1 Frame 2 Frame 3

LF 1
RF 1

LF 2
RF 2

LF 3
RF 3

LF 4
RF 4

Time [ms]

Video

Left
Right

52.25

DUT

Video
Codec

Left
Audio
Codec

Right
Audio
Codec

DUT
Video

Monitor
Left

Speaker
Right

Speaker

Stimulus

On the Limits of Standard-compliant Parallel
Simulation of the IEEE SystemC Language

FDL'18 Keynote,
Munich, Germany

(c) 2018 R. Doemer, CECS 19

Experiments and Results

• DVD Player Example
– Parallel video and audio decoding

with different frame rates

1. Real time schedule: fully parallel

4. Out-of-order parallel schedule (OoO PDES)

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 37

0 26.12

33.33

52.25

66.67

78.38

100

Frame 1 Frame 2 Frame 3

LF 1
RF 1

LF 2
RF 2

LF 3
RF 3

LF 4
RF 4

Time [ms]

Video

Left
Right

0 26.12

33.33

52.25

66.67

78.38

100

Frame 1 Frame 2 Frame 3

LF 1
RF 1

LF 2
RF 2

LF 3
RF 3

LF 4
RF 4

Time [ms]

Video

Left
Right

DUT

Video
Codec

Left
Audio
Codec

Right
Audio
Codec

DUT
Video

Monitor
Left

Speaker
Right

Speaker

Stimulus

Experiments and Results

• DVD Player Example
– Parallel video and audio decoding

with different frame rates

• Simulator Run Times
– 4-core Intel® Xeon® CPU at 3.4 GHz

– RISC v0.2.1, Posix-threads

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 38

DUT

Video
Codec

Left
Audio
Codec

Right
Audio
Codec

DUT
Video

Monitor
Left

Speaker
Right

Speaker

Stimulus

DES PDES
OoO

PDES

10 sec
stream

Run Time 6.98 s 4.67 s 2.94 s

CPU Load 97% 145% 238%

Speedup 1 x 1.49 x 2.37 x

100 sec
stream

Run Time 68.21 s 45.91 s 28.13 s

CPU Load 100% 149% 251%

Speedup 1 x 1.49 x 2.42 x

On the Limits of Standard-compliant Parallel
Simulation of the IEEE SystemC Language

FDL'18 Keynote,
Munich, Germany

(c) 2018 R. Doemer, CECS 20

Experiments and Results

• Mandelbrot Renderer (Graphics Pipeline Application)
– Mandelbrot Set

• Mathematical set of points
in complex plane

– Two-dimensional fractal shape

• High computation load
– Recursive/iterative function

• Embarrassingly parallel
– Parallelism at pixel level

– SystemC Model
• TLM abstraction

• Horizontal image slices

• Highly configurable

• Parallelism parameter
from 1 to 256 slices

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 39

Top

Stimulus Monitor

Platform

DUT

din dout

Coordinator

M M M M

Experiments and Results

• Mandelbrot Renderer (Graphics Pipeline Application)
 Simulated Graphics Demonstration

(when network delays prevent actual graphical demo)

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 40

On the Limits of Standard-compliant Parallel
Simulation of the IEEE SystemC Language

FDL'18 Keynote,
Munich, Germany

(c) 2018 R. Doemer, CECS 21

Experiments and Results

• Mandelbrot Renderer (Graphics Pipeline Application)
– Simulator run times on 16-core Intel® Xeon® multi-core host

– 2 CPUs at 2.7 GHz, 8 cores each, 2-way hyper-threaded

– RISC V0.2.1, Posix-threads

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 41

Parallel
Slices

DES PDES OOO PDES

Run
Time

CPU
Load

Run
Time

CPU
Load

Speedup
Run
Time

CPU
Load

Speedup

1 162.13 s 99% 162.06 s 100% 1.00 x 161.90 s 100% 1.00 x
2 162.19 s 99% 96.50 s 168% 1.68 x 96.48 s 168% 1.68 x
4 162.56 s 99% 54.00 s 305% 3.01 x 53.85 s 304% 3.02 x
8 163.10 s 99% 29.89 s 592% 5.46 x 30.05 s 589% 5.43 x
16 164.01 s 99% 19.03 s 1050% 8.62 x 20.08 s 997% 8.17 x
32 165.89 s 99% 11.78 s 2082% 14.08 x 11.99 s 2023% 13.84 x
64 170.32 s 99% 9.79 s 2607% 17.40 x 9.85 s 2608% 17.29 x

128 174.55 s 99% 9.34 s 2793% 18.69 x 9.39 s 2787% 18.59 x
256 185.47 s 100% 8.91 s 2958% 20.82 x 8.90 s 2964% 20.84 x

• Many-Core Target Platform: Intel® Xeon Phi™
– Many Integrated Core (MIC) architecture

• 1 Coprocessor 5110P CPU at 1.052 GHz

• 60 physical cores with 4-way hyper-threading
– Appears as regular Linux host with 240 cores

• Up to 8 lanes available for vector processing

 RISC extended for exploiting 2 types of parallelism
– Out-of-Order PDES: thread-level parallelism

– Intel® compiler SIMD: data-level parallelism

 RISC SIMD Advisor identifies functions with data-level
parallelism suitable for SIMD vectorization

 DAC ’17 paper:
"Exploiting Thread and Data Level Parallelism
for Ultimate Parallel SystemC Simulation”

Experiments and Results

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 42

On the Limits of Standard-compliant Parallel
Simulation of the IEEE SystemC Language

FDL'18 Keynote,
Munich, Germany

(c) 2018 R. Doemer, CECS 22

PAR MT SIMD MT+SIMD
1
2
4
8

16
32
64

128
256

• Many-Core Target Platform: Intel® Xeon Phi™
– Exploiting thread- and data-level parallelism [DAC’17]

– Mandelbrot renderer (graphics pipeline application)

• Experimental Results:

 Increasing degree of parallelism (PAR = number of threads)
reaches a combined multi-threading (MT)
and data-level (SIMD) speedup of up to 212x!

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 43

0

50

100

150

200

250

1 2 4 8 16 32 64 128 256

MT

SIMD

MT+SIMD

Experiments and Results

PAR MT SIMD MT+SIMD
1 1.00
2 1.68
4 3.04
8 5.84

16 11.37
32 21.32
64 41.07

128 46.29
256 49.90

PAR MT SIMD MT+SIMD
1 1.00 6.92
2 1.68 6.92
4 3.04 6.92
8 5.84 6.92

16 11.37 6.92
32 21.32 6.91
64 41.07 6.90

128 46.29 6.89
256 49.90 6.87

PAR MT SIMD MT+SIMD
1 1.00 6.92 6.94
2 1.68 6.92 11.77
4 3.04 6.92 21.19
8 5.84 6.92 40.10

16 11.37 6.92 72.52
32 21.32 6.91 137.21
64 41.07 6.90 208.41

128 46.29 6.89 212.96
256 49.90 6.87 194.19

Speedup

Threads

RISC Open Source Software

• RISC Compiler and Simulator are freely available
– http://www.cecs.uci.edu/~doemer/risc.html#RISC042

• Installation notes and script: INSTALL, Makefile

• Open source tar ball: risc_v0.4.2.tar.gz

• Docker script and container: Dockerfile

• Doxygen documentation: RISC API, OOPSC API
• Tool manual pages: risc, simd, visual, …

• BSD license terms: LICENSE

– Companion Technical Report
• CECS Technical Report 17-05: CECS_TR_17_05.pdf

 Docker container:
 https://hub.docker.com/r/ucirvinelecs/risc/

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 44

bash# docker pull ucirvinelecs/risc
bash# docker run -it ucirvinelecs/risc
[dockeruser]# cd demodir
[dockeruser]# make test

On the Limits of Standard-compliant Parallel
Simulation of the IEEE SystemC Language

FDL'18 Keynote,
Munich, Germany

(c) 2018 R. Doemer, CECS 23

Ongoing Efforts: Scaling RISC

• Support for Industrial Sizes and Design Flows
1. New concept of Partial Segment Graphs (PSG)

• File hierarchies with multiple translation units

• Support for 3rd party libraries, IP protection

2. Improved compiler analysis for less false conflicts
• Port-Call-Path technique identifies instances [DATE’18]

• Reference type analysis identifies target variables

3. Evaluation of RISC in industry
• “Big example”, very large SystemC model at RTL abstraction

• Integration with Simics virtual platforms

4. Support for TLM-2.0
• Pro: Part of SystemC standard, needed for wide RISC adoption

• Con: Obstacle 5!
No channel, unprotected execution in foreign territory

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 45

[image source: Doulos Ltd]

Scaling RISC: Overcoming Obstacle 5

• SystemC TLM-2.0
– Initiators and Targets

• Sockets

• Forward path

• Backward path

• Shared transaction
object

• DMI bypass

– Well-defined Socket API
1. b_transport()

2. nb_transport_fw()

3. nb_transport_bw()

4. transport_dbg()

5. get_direct_mem_ptr()

6. invalidate_direct_mem_ptr()

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 46

[image source: Doulos Ltd]

On the Limits of Standard-compliant Parallel
Simulation of the IEEE SystemC Language

FDL'18 Keynote,
Munich, Germany

(c) 2018 R. Doemer, CECS 24

Scaling RISC: Overcoming Obstacle 5

• Classic TLM: Producer-Consumer Example

– Threads operate in their own modules or protected channels

 Well-behaved execution in safe execution contexts

 Current RISC analysis fully supports this modeling style

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 47

Home

Door

MarketMarket

Farm

FarmerWorkers Customer

work

Eggs
eat

Gate
sell buy

Scaling RISC: Overcoming Obstacle 5

• New TLM-2.0: Producer-Consumer Example

– No channels! Threads operate directly in others’ modules

 Fast, but dangerous execution in foreign territory

 Current RISC analysis cannot handle this modeling style

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 48

Farm

FarmerWorkers

Home

Customer

work

Eggs
eat

Back
Door

Barn
Doortake

On the Limits of Standard-compliant Parallel
Simulation of the IEEE SystemC Language

FDL'18 Keynote,
Munich, Germany

(c) 2018 R. Doemer, CECS 25

Scaling RISC: Overcoming Obstacle 5

• TLM-2.0 is quite different from traditional TLM
 Need significant extension of compiler analysis

• Conflict analysis must follow the initiator’s threads execution
through the hierarchical model structure to the targets

 Leverage and extend existing RISC technology
• Instance tree, instance path, and instance ID [RISCv020]
• Hybrid analysis [ASPDAC’17]
• Port-Call-Paths (PCP) [DATE’18]

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 49

[image source: Doulos Ltd]

Concluding Remarks

• On the Limits of Standard-compliant
Parallel Simulation of SystemC
– Seven Obstacles stand in the way of parallel SystemC

• Co-routine semantics, sequential simulator state primitives,
lack of thread-safety, weak role of channels, TLM-2.0, temporal
decoupling, and an overall sequential modeling mindset

 Truly parallel SystemC appears elusive
given the current IEEE Standard 1666-2011

• Parallel Simulation with Maximum Compliance
– Example: Recoding Infrastructure for SystemC (RISC)

• Out-of-order Parallel Discrete Event Simulation

• Dedicated SystemC compiler and parallel simulator

• Multi- and many-core host platforms

• Two orders of magnitude faster simulation with full accuracy

• Open source

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 50

On the Limits of Standard-compliant Parallel
Simulation of the IEEE SystemC Language

FDL'18 Keynote,
Munich, Germany

(c) 2018 R. Doemer, CECS 26

Acknowledgments

• For solid work, fruitful discussions, and honest feedback,
I would like to thank:

– My team at UCI
• Zhongqi Cheng

• Guantao Liu

• Daniel Mendoza

• Tim Schmidt

– Our collaborators at Intel
• Ajit Dingankar

• Desmond Kirkpatrick

• Abhijit Davare

• Philipp Hartmann

– And many others…

• This work has been supported in part by substantial funding
from Intel Corporation. Thank you!

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 51

Selected References

• [RISC v0.4.2] RISC project, release 0.4.2: http://www.cecs.uci.edu/~doemer/risc.html

• [DATE’18] T. Schmidt, Z. Cheng, R. Dömer: "Port Call Path Sensitive Conflict Analysis for
Instance-Aware Parallel SystemC Simulation", Proceedings of DATE, Dresden, Germany,
March 2018.

• [CECS’17] G. Liu, T. Schmidt, Z. Cheng, R. Dömer: "RISC Compiler and Simulator, Release
V0.4.0: Out-of-Order Parallel Simulatable SystemC Subset", CECS TR 17-05, July 2017.

• [DAC’17] T. Schmidt, G. Liu, R. Dömer: "Towards Ultimate Parallel SystemC Simulation
through Thread and Data Level Parallelism", Proceedings DAC, Austin, TX, June 2017.

• [Springer’17] R. Dömer, G. Liu, T. Schmidt: "Parallel Simulation", chapter 17 in "Handbook
of Hardware/Software Codesign" by S. Ha and J. Teich, Springer Netherlands, June 2016.

• [ASPDAC’17] T. Schmidt, G. Liu, R. Dömer: "Hybrid Analysis of SystemC Models for Fast
and Accurate Parallel Simulation", Proceedings ASPDAC, Tokyo, Japan, January 2017.

• [IEEE ESL’16] R. Dömer: "Seven Obstacles in the Way of Standard-Compliant Parallel
SystemC Simulation", IEEE Embedded Systems Letters, vol. 8, no. 4, pp. 81-84, Dec. 2016.

• [DAC’15] R. Dömer:
“Towards Parallel Simulation of Multi-Domain System Models", Keynote, DAC workshop on
System-to-Silicon Performance Modeling and Analysis, June 2015.

• [IEEE TCAD’14] W. Chen, X. Han, C. Chang, G. Liu, R. Dömer:
"Out-of-Order Parallel Discrete Event Simulation for Transaction Level Models",
IEEE Transactions on CAD, vol. 33, no. 12, pp. 1859-1872, December 2014.

• [DATE’12] W. Chen, X. Han, R. Dömer: "Out-of-Order Parallel Simulation for ESL Design",
Proceedings of DATE, Dresden, Germany, March 2012.

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 52

