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Abstract This work presents a method of automatically generating embedded
software including bus driver code from a transaction level model
(TLM). For the application software, a real time operating system
(RTOS) adapter is introduced to model scheduling and synchroniza-
tion at C level. ANSI-C code is generated targeting this RTOS adapter.
Bus drivers are also automatically created for HW/SW communication.
Finally, the software image file is created from the C code, bus driver
code, RTOS adapter and RTOS library code.

As a result, efficient embedded software is synthesized from abstract,
target CPU independent source code, eliminating the need for manual
RTOS targeting, I/O driver coding and system integration.

1. Introduction

The rapid development of semiconductor process technology and the
increasing use of RISC/DSP cores contribute to an increased importance
of embedded software in SoC. A typical SoC design today includes one or
more processors, memory, dedicated hardware, and a complex communi-
cation architecture. To drive the hardware, target specific SoC software
is needed which contains real time operating systems and bus drivers,
along with the specific application software. The increasing complexity
of software in such SoC designs requires that a large period of the design
time will actually be used for software development.

Transaction level models (TLM) are widely used in SoC modeling for
early design space exploration. After the SoC architecture is fixed, sep-
arate HW/SW models are created from the TLM. Usually, the TLM is
written in a system level description language (SLDL) (e.g. SystemC [9]
or SpecC [6]). Today however, the TLM is mostly used only as a ref-
erence model for software engineers. Most of the embedded software
is still written manually from scratch. This is a slow and error-prone
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process. Moreover, to validate the manually written software, designers
have to simulate the compiled binary through either a hardware proto-
type or slow instruction set simulators (ISS). Both approaches hinder
the SoC development process significantly since the prototype is usu-
ally only available in the later stages of the design process and the ISS
simulation is extremely slow.

To tackle this problem, it is desirable that we can derive SoC soft-
ware directly from the TLM and the generated software can be vali-
dated and tested before any platform prototype is available. This paper
solves these problems by introducing software synthesis which automat-
ically generates application as well as bus driver code from the TLM.
Rather than binary code simulation, the generated software can be di-
rectly re-imported into the original TLM and simulated with the rest of
the system at C level. As a result, simulation speed increases by orders
of magnitude, while cycle and pin accurate I/O is still available at the
bus level.

The rest of this paper is organized as follows: After a brief overview
of related work, Section 2 describes the overall design flow of our soft-
ware synthesis process. Section 3 through Section 6 then address RTOS
targeting, application code generation, bus driver synthesis, and binary
image generation in detail. Finally, experimental results are listed in
Section 7, and Section 8 concludes this work.

1.1 Related Work

A lot of work has been spent on software synthesis. There are ap-
proaches to code generation from UML [1], from graphical finite state
machine design environments (e.g. StateCharts [10]), from DSP graphi-
cal programming environments (e.g. Ptolemy [13]), or from synchronous
programming languages (e.g. Esterel [2]). In POLIS [5], a way of gener-
ating C code from co-design finite state machines is described. However,
this work targets mainly reactive real-time systems and cannot be easily
applied to more general applications. There are also works on software
scheduling, including quasi-static scheduling in Petri-Nets [12], and a
combination of static and dynamic task scheduling [3]. Operating sys-
tem based software synthesis can be found in [4] and [7].

The focus in this paper is similar to the approaches [11] and [9]. [11]
presents software generation from SystemC based on the redefinition and
overloading of SystemC class library elements. In [9], a software-software
communication synthesis approach by substituting SystemC modules
with an equivalent C structure is proposed. However, the code generated
by these two approaches can not be validated through insertion into



Software and Driver Synthesis from Transaction Level Models 3

B1 B2 B3

CPU

(a) Specification model

CPU

RTOS model

��� � � ���	��
 �Task_B1 Task_B2 

��
� ����
�� ��� �
�

�� �� � ��� �
���

(b) TLM

��� � �  �!#"�$%�

CPU

app.c drv.c

C_wrapper

&('*),+ -
.0/1.32 + 43576 .

8 9:; :<
:=

(c) C model

app.c

drv.c

>(?1@ A ?

BDCFE A GIH(G

ISS

iss.h

J K LNM A ? K ? J O G K P
?0Q*?1R K G J A ?

SUT V W X�Y[ZU\ V
]^_` _a
_b

(d) Implementation model

Figure 1. Software synthesis flow.
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the original system model and the I/O drivers of the system are not
addressed.

2. Design Flow

The system design process starts with a specification model written
by the designer to specify the desired system functionality, as shown in
Fig. 1(a). Then, a system architecture model is derived through system
partitioning and system bus selection. During this process, the sys-
tem functionality is partitioned onto multiple processing elements (PEs)
and a communication architecture consisting of abstract communication
channels is inserted to represent the refined communication between PEs
[14]. The resulting model, shown in Fig. 1(b), serves as the input for the
software code generation.

During system partitioning, RTOS scheduling is inserted for the pro-
cessor PEs that require dynamic scheduling support [8]. Software tasks
are created from behaviors mapped to the same PE and an abstract
RTOS model is inserted to manage the generated software tasks so that
the software can be simulated at the fast transaction level.

Next, from the TLM, software C code is generated, as shown in
Fig. 1(c). Application code (app.c) is generated for the software tasks
and bus drivers (drv.c) are created for the abstract communication
adapter channels. For validation, the generated C code is re-imported
into the system model through a wrapper. Designers can use this C
model for fast co-simulation of the system, avoiding the time consuming
instruction set simulator (ISS) co-simulation for many cases.

Finally the generated C code is compiled into the processors instruc-
tion set and linked against the target RTOS to produce the final binary
image. For final timing analysis, the binary code can also be simulated
by use of an ISS, as shown in Fig. 1(d).

3. RTOS Adapter

To support multitasking, a RTOS kernel is usually needed for the
generated C code. However, there exists a large variety of RTOS pro-
viding different interfaces. One solution is to create specific software
code for each target RTOS. An alternative solution is to use a general
interface which abstracts away the underlining target specific RTOS im-
plementations. In other words, a middleware layer can be used to adapt
the specific RTOS to a general API. Our approach follows the second
solution, using a RTOS adapter which provides a common interface to
specific RTOS services. The RTOS adapter is essentially a middleware
layer between the specific RTOS and the generated application software.
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void OSStart ( void ) ;
void OSInit ( void ) ;
void OSWaitfor( s im time ) ;
/∗Task Management∗/

5 t a s k t TaskCreate ( t a s k f ∗ f , t a sk a arg , i n t p r i ) ;
void TaskDelete ( t a s k t t ) ;
void TaskJoin ( t a s k t t ) ;
void TaskRun( t a s k t t1 , t a s k t t2 ) ;
void TaskSuspend( t a s k t t ) ;

10 void TaskResume( t a s k t t ) ;
/∗ Inter Task Synchronization ∗/
void SemRelease( sem t ∗sem) ;
void SemAquire ( sem t ∗sem) ;
void EventNoti fy ( ev t t e ) ;

15 void EventWait ( ev t t e ) ;
/∗Channels∗/
void MutexAquire( mtx t m) ;
void MutexRelease( mtx t m) ;
void QueueSend ( const void ∗d , unsigned long l ) ;

20 void QueueReceive( void ∗d , unsigned long l ) ;
. . .

Figure 2. RTOS adapter interface

3.1 Adapter Procedural Interface

The interface of our RTOS adapter is defined in Fig. 2. OSInit ini-
tializes the relevant kernel data structures while OSStart starts the task
scheduling. In addition, OSWaitfor is provided to enable time modeling
in the simulation. That is, the software tasks can call OSWaitfor to
advance the system simulation time. This is used only for simulation
and it will be ignored later in the real code.

Task management is the most important part of the RTOS adapter.
This includes standard functions for task creation (TaskCreate), task
completion (TaskJoin), task termination (TaskDelete), and temporary
task suspension (TaskSuspend, TaskResume).

The RTOS adapter also provides two kinds of task synchronization
services: semaphore and event. Inter-task communication is provided
by abstract channels. Together, these functions support resource shar-
ing, connection oriented data exchange, and any combination of these
services. Note that the RTOS adapter provides a similar interface as
the standard SLDL channel library. Thus, during code generation, most
standard SLDL synchronization methods can be directly converted to
this interface.

3.2 Host Adapter Library

In our approach, two RTOS adapter libraries are created for the in-
terface defined above, one for the host and one for the target platform.
The host adapter library is linked against the SLDL simulation engine
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so that the C code can co-simulate with the rest of the system code
in SLDL. As shown in Fig. 3(a), the lowest layer of the host software
stack is the thread library. This can be any host library supporting
thread management (e.g POSIX thread library, Win32 thread library,
or QuickThreads). On top of the thread management layer, both the
SLDL simulation engine and the host RTOS library are implemented.
The SLDL simulation engine provides standard system level constructs
(channels, behaviors, interfaces etc.) for modeling custom hardware, IP
cores and system busses, while the host RTOS adapter provides the C
API for the OS related functions.

For host simulation, the highest layer is a TLM for the application
including the hardware, software and the communication channels. The
software (app.c, drv.c) for each processor is encapsulated in a SLDL
wrapper. The RTOS adapter provides the generated C code with stan-
dard OS services. Communication between software C code and the rest
of the system is performed through the ports of the wrapper.

3.3 Target Adapter Library

Fig. 3(b) shows the target software implementation. This is based
upon the processor’s hardware including its instruction set architecture
(ISA), its I/O interfaces and its interrupt handling mechanisms. The
hardware abstraction layer (HAL) is then implemented in software on
top of this layer. It provides an abstraction of the processor hardware
and is used as an interface for higher software layers. The next layer is
the RTOS kernel for the target processor, which can be a commercial or a
custom RTOS. The RTOS kernel implements basic multitasking and syn-
chronization functionality corresponding to the services provided by the
RTOS adapter. On top of the RTOS kernel is the target RTOS adapter
which resembles a middleware layer translating task management APIs
of the RTOS adapter into the corresponding APIs of the target RTOS
kernel. Furthermore, the inter-task communication functionality of the
RTOS adapter is directly implemented by using inter-process communi-
cation (IPC) mechanisms that are part of the target RTOS kernel. Note
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that bus drivers are implemented on top of both HAL library and RTOS
kernel.

4. Application Code Generation

In the code generation process, C code is generated for all the parts
of the system mapped to a processor. Specifically, SLDL constructs,
including behaviors, channels and interfaces, are converted into C code.
Essentially, this step synthesizes the hierarchy and port mapping ele-
ments contained in the SLDL description into ANSI C code.

For details on this code generation process, please refer to [15].

4.1 OS Targeting for Task Management

Generally, computation within the TLM is described through hierar-
chical and parallel composition of behaviors. This can be implemented
in software using hierarchical C structures. For concurrent behaviors,
however, multiple software tasks are needed to implement the specifica-
tion.

This process is illustrated in Fig. 4. In the specification model
(Fig. 4(a)), two behaviors B1 and B2 are running in parallel inside
behavior CPU . After the RTOS scheduling step, two software tasks
(Task B1 and Task B2) are created dynamically and scheduled by the
abstract RTOS model, as shown in Fig. 4(b) [16]. Next, C code is gen-
erated for these tasks, as shown in Fig. 4(c) [15].

behavior B1()
{void main( void)
. . .}

behavior B2()
5 {void main( void)

. . .}
behavior CPU()
{B1 b1() ;
B2 b2() ;

10 void main( void)
{

15 par
{ b1 .main() ;

b2 .main() ;
}

20 }

(a) Spec. model

behavior Task B1()
{void main( void)
. . .}

behavior Task B2()
5 {void main( void)

. . .}
behavior Task CPU(RTOS os )
{Task B1 task b1 ( os ) ;
Task B2 task b2 ( os ) ;

10 void main( void) {
Task me;
task b1 . os task create () ;
task b2 . os task create () ;
me = os . fork () ;

15 par {
b1 .main() ;
b2 .main() ;

}
os . join (me) ;}

20 }

(b) Multi task TLM

struct Task B1 { . . .} ;
void Task B1 main( struct

Task B1 ∗This)
{ . . .}
struct Task B2 { . . .} ;

5 void Task B2 main( struct
Task B2 ∗This)

{ . . .}
struct Task CPU {
struct Task B1 task b1 ;
struct Task B2 task b2 }

10 void Task CPU main( struct
Task B1B2 ∗This)

{
TaskCreate(&Task B1 main ,

&This−>task b1 , 1) ;
TaskCreate(&Task B2 main ,

&This−>task b2 , 2) ;

15 TaskJoin(NULL) ;
}

(c) C code

Figure 4. C code generation for task management
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4.2 OS Targeting for Task Communication

Channels in the TLM can be divided into two categories: intra- and
inter-PE channels. For the software implementation, the former are
converted into task communication, while the latter are implemented as
bus drivers.

The intra-PE channels can be further divided into two categories,
SLDL standard channels and user defined channels. During the code
generation process, methods of SLDL standard channels can be directly
converted into the corresponding channel APIs of the RTOS adapter.
User defined channels, on the other hand, are implemented the same
way as the behaviors.

5. Bus Driver Generation

In the partitioned system specification, communication between dif-
ferent PEs is performed through message passing channels with different
semantics (blocked vs. non-blocked) and different data types. Then, the
bus driver synthesis step refines the system communication architecture
from an abstract message-passing down to an actual implementation
over pins and wires.

Channel refinement is performed before the bus driver code can be
created. This includes the definition of the overall network topology and
generation of point-to-point communication links. The point-to-point
links are then grouped into physical links and packet transfers for each
link are implemented. Note that four layers of communication channels
are inserted to drive the low layer communication media interfaces of
each PE, as illustrated in Fig. 1(b) earlier.

Table 1 summarizes the communication channels, which refine the
message passing channel to protocol word/frame transactions. The high-
est layer is the presentation channel which provides services to send and
receive messages of arbitrary, abstract data type between different PEs.
The next layer is the link channel which provides services to exchange
data packets in the form of uninterpreted byte blocks. Typically, in a
bus-based master/slave arrangement, each logical link is split into a data
stream under the control of the master and a handshake (interrupt) from
slave to master. So, in the implementation, the master side waits for a
semaphore (which will be released by a client interrupt) before initiating
a write or read transfer.

The media access (MAC) channel implements external interfaces of
the HAL library for a processor PE. It is responsible for slicing blocks
of bytes into unit transfers available at the bus interface. Finally, the
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Name C code

Presentation

• Typed, named messages

• Data formatting

App send(struct App *This, struct S *buf)

{

Link send(This->link,(void *)&buf, sizeof(buf));

}

Link

•Point-to-Point logical links

• Synchronization

• Addressing

Link send(struct Link *This,void *d, unsigned l)

{

SemAquire(This->sem);

MAC write(This->mac,This->addr,d,l);

}

Media Access

• Shared medium streams

• Data slicing

MAC write(struct Mac *This,unsigned addr,

void *d,unsigned l){

for(...)

word = ...;

Protocol writeWord(addr,word);

}

Protocol

• Word/frame transmission

• Protocol timing

Protocol writeWord(U32 addr, WORD data)

{

*addr = data; /*memory mapped IO*/

}

Table 1. C code generation for communication adapter channels.

protocol channel provides services to transfer words or frames over the
physical medium.

In our implementation, the MAC and protocol channels are taken out
of the processor database, while the presentation and link channels are
created automatically. As we can see from Table 1, the bus driver (drv.c)
is created by converting the four communication adapter channels into
C and assembly code. This is then used by the application to drive
the protocol channel. Note that the protocol channel implementation
varies depending on how the processor is connected to the system bus.
Usually, in a typical memory mapped I/O arrangement, the protocol
layer send/receive primitives correspond to load and store instructions
in the processor.

6. Target Specific Binary Creation

As the final step of software synthesis, the output C code is then
compiled into the target processor’s instruction set using the C compiler
available for the processor. During this process, a HAL library is needed
to provide target specific initialization and run time environment rou-
tines. It also provides the implementation for the MAC and protocol
channels used during the bus driver synthesis.
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Finally, the compiled object code is linked against the RTOS kernel,
the target RTOS adapter library and the processor HAL library to gen-
erate executable code for the processor. A final simulation model can
be created by replacing the component model of the processor with the
ISS wrapper behavior of the target processor.

7. Experimental Results

We have implemented the proposed software synthesis tool and ap-
plied it to a set of design examples: a GSM voice codec, a JPEG encoder,
a motor control system, and a MP3 decoder. For each example appli-
cation, we have created a set of architectures varying in the number of
hardware units that accellerate some part of the computation.

Using our software synthesis tool, we were able to generate the entire
embedded software for each target architecture automatically. Moreover,
code generation took less than a second in every case.

Design (loc), CPU, num. Scheduling Bhvrs./ SW C code Time

architecture of co-proc. policy Chnls. Tasks (loc) (sec)

Vocoder arch1 DSP56600, 1 RR 109/3 2 8,297 0.34

9,191 arch2 DSP56600, 2 RR 104/4 2 8,098 0.35

arch3 Coldfire, 3 priority 109/5 2 8,334 0.44

arch4 Coldfire, 4 priority 111/6 2 8,537 0.50

JPEG arch1 DSP56600, 1 static 26/3 1 1,119 0.11

2,251 arch2 DSP56600, 2 static 37/4 1 1,553 0.10

arch3 Coldfire, 3 static 39/5 1 1,636 0.09

arch4 Coldfire, 4 static 39/6 1 1,679 0.11

Motor arch1 TX-49, 1 RR 28/9 34 1,931 0.07

2,049 arch2 TX-49, 2 RR 27/10 6 1,916 0.06

arch3 TX-49, 3 priority 25/8 4 1,720 0.05

arch4 TX-49, 4 priority 25/9 4 1,745 0.08

MP3 arch1 Coldfire, 1 RR 148/6 7 27,191 0.76

8,592 arch2 Coldfire, 5 RR 147/7 16 25,524 0.85

Table 2. Software synthesis results.

Details of our experimental results are summarized in Table 2. We
have targeted three different CPUs, the Motorola DSP 56600, the Mo-
torola Coldfire processor, and the Toshiba TX-49 processor. Each CPU
is assisted by a number of hardware accelleration units, as listed in the
table. Also listed are the scheduling policy (round-robin, priority-based,
or static), the number of behaviors and channels in the SLDL model,
the number of parallel software tasks, the number of lines of code (loc)
of generated C code, and the run-time of our software synthesis tool (on
a 2.4 GHz AMD Opteron PC).
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As discussed in Section 6, MAC and protocol layer channels are in-
serted from the HAL library during the bus driver synthesis. Based on
these channels, our synthesis tool creates the bus drivers for the different
target processors. Then, to create the final executable image, the C code
is compiled into binary code for the target RTOS. For our experiments,
we have used the µC/OS-II RTOS which requires only a few lines of
interface code for each function in the adapter API.

It could be argued that there is little or no productivity gain if our
software synthesis flow is applied to just a single target architecture,
because the amount of work in writing the specification TLM is about the
same when writing the target C code directly. However, this argument
does not hold if the target architecture changes or multiple architectures
are analyzed during system design exploration. Then, the specification
model is written only once, but many target architecture models can be
generated automatically within seconds. Thus, the productivity gain is
tremendous and true design space exploration becomes possible.

8. Conclusions

In this work, we have proposed steps to synthesize embedded soft-
ware code and bus drivers from a TLM. A RTOS adapter library is
introduced to facilitate the OS targeting process as well as to enable the
generated C code to co-simulate with the rest of the system model. C
code is automatically synthesized from the SLDL description of the input
TLM. Parallel behaviors are converted into concurrent software tasks.
Intra-PE channels are converted into inter-process synchronization and
communication primitives, whereas inter-PE channels are converted into
software bus drivers.

The automation of the SoC software generation process frees the de-
signer from the tedious and error-prone tasks of creating software man-
ually after SW/HW partitioning. Since the final software is directly
derived from the TLM, validation of the software code becomes signifi-
cantly easier than for manually written code.

In summary, we have developed a software synthesis tool that sup-
ports the automatic generation of efficient embedded software from an
abstract TLM. Our experiments clearly demonstrate the applicability
and benefits of the software synthesis approach in a system design envi-
ronment.

Currently, our synthesis tool is written for the SpecC SLDL because
of its simplicity and easy availability. Future work includes the extension
of this methodology for SystemC SLDL, as well as the optimization of
the generated code and support for more target RTOS and processors.
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