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Abstract

In recent years, fast simulation of Electronic System Level(ESL) models has gained signif-
icant attraction due to the explosive growth of system size and complexity. As a System-Level
Description Language (SLDL), SpecC language has explicit advantages in specifying paral-
lelism and hierarchy in ESL models, which creates potentialfor efficient parallel simulation.
Currently, the SpecC simulator utilizes QuickThreads for its sequential simulator, and Posix-
Threads for the parallel one. In this thesis, we will proposethe design and implementation of
a hybrid thread library for efficient system-level simulation in SpecC. Our proposed thread li-
brary is based on QuickThreads and PosixThreads and combines the advantages of both kernel-
level and user-level thread libraries. Systematic performance evaluation indicates that the new
thread library achieves a significant improvement in simulation time for parallel benchmarks
and real-world embedded applications.
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Abstract

In recent years, fast simulation of Electronic System Level (ESL) models has gained significant at-
traction due to the explosive growth of system size and complexity. As a System-Level Description
Language (SLDL), SpecC language has explicit advantages in specifying parallelism and hierar-
chy in ESL models, which creates potential for efficient parallel simulation.Currently, the SpecC
simulator utilizes QuickThreads for its sequential simulator, and PosixThreads for the parallel one.
In this thesis, we will propose the design and implementation of a hybrid thread library for ef-
ficient system-level simulation in SpecC. Our proposed thread library is based on QuickThreads
and PosixThreads and combines the advantages of both kernel-level and user-level thread libraries.
Systematic performance evaluation indicates that the new thread library achieves a significant im-
provement in simulation time for parallel benchmarks and real-world embedded applications.

1 Introduction

Nowadays, the fast development of modern embedded systems imposes enormous challenges to the
fast simulation of Electronic System Level (ESL) models. The traditional user-level and kernel-
level thread libraries have both advantages and disadvantages in the implementation of the parallel
system-level simulator. User-level thread library such as QuickThreadsowns a high computation
performance but it does not support parallel execution; kernel-level thread library (PosixThreads)
can work in parallel on multiprocessor host, but the heavy load of thread initialization and synchro-
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nization will slow down the simulation. A modification in threading model is necessary to achieve
better performance of the parallel ESL simulators.

1.1 Background on Multithreading

A thread is a sequential piece of code that is executing in the operating system. It is the smallest unit
of programmed instructions that can be scheduled independently by OS. Incontrast to a process in
the operating system, a thread owns no memory or resources of its own except for a stack, a copy
of the registers and the program counter. All the threads in the same process share the address
space. Therefore, context switching between threads in the same process is much more efficient
than context switching between processes. Also, the creation and deletionof a thread is much
simpler than a process. Sometimes, a thread is called a lightweight process (LWP).

Generally speaking, there are two ways to implement threads in an operating system. The
major difference between these two kinds of threads is the relationship between the thread and the
operating system scheduler. One kind of threads is created and scheduled by the kernel, always
called kernel-level threads. For these threads, all the thread manipulationis done by the in-kernel
scheduler. By mapping one userspace thread to one kernel thread, it allows multiple threads to
run in parallel on multiprocessors. Also, kernel-level threads offer synchronization primitives such
as mutexes and conditional variables against concurrent access to the shared variables. The well-
known PosixThreads library is implemented in this way and its threading model is as Figure 1.

Figure 1: Kernel-level Threading Model [19]

On the other hand, threads can also be implemented in userspace libraries. In such a case, the
operating system kernel is not aware of the threads, and all the thread management is done by the
runtime thread library. Such kinds of threads are called user-level threads and a good example
is QuickThreads. QuickThreads library is a basic cooperative userspace threads package. As the
thread operations require no kernel intervention, QuickThreads haveextremely low overheads and
can achieve a high computation performance. However, because the threads in the Quickthreads
library are invisible to the operating system, the user-level threads are onlyallowed to gain access
to one core in the CPU. Thus, simultaneous access to multiple processors is not possible and user-
level thread libraries are always uniprocessors threads package. The thread mapping model of a
user-level thread library such as QuickThreads is given in Figure 2.

As user-level threads require no kernel intervention, switching between user-level threads is
much faster than that of kernel-level threads. This often matters to concurrent systems that use a
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Figure 2: User-level Threading Model [19]

large number of very short-lived threads and consist of a large amountof context switching. Another
advantage of user-level threads is that it does not require switching to kernel-level scheduler and
again switch back to the userspace program during context switching. Both of these features make
user-level threads very computation efficient on the uniprocessor models. Also, as user-level threads
do not need to manage kernel structures, the creation and deletion of a user-level thread is often
faster than a kernel-level thread. The only drawback of the user-level thread library is that kernel-
level threads are able to run simultaneously on multiprocessors, while purelyuser-level threads
cannot achieve this feature. In order to obtain a better performance of the application program (say
ESL simulators), it requires improvement on the models and implementation of the thread library.

1.2 Problem Description

1.2.1 SLDL Execution Semantics

System Level Description Language (SLDL) is widely used today to describe Electronic System
Level (ESL) models. In contrast to the traditional C/C++ languages which are sequential and flat,
SLDL explicitly specifies the behavioral and structural hierarchy in the design model. The key ESL
concepts in the system model provide possibilities for multithreading and parallelism to enhance
the simulation performance. In order to guarantee fast and accurate model validations, the current
SLDL simulation is based on the traditional Discrete Event (DE) simulation.

The traditional Discrete Event (DE) Simulation is driven by events and simulation time ad-
vances. Usually, it is comprised of multiple delta and timed cycles. During each of these cy-
cles, threads are moved among different queues in the scheduler. Basically, there are five queues
(READY, RUN, WAIT, WAITFOR, COMPLETE) in the scheduler to define different states of a
thread [6] [9]. When a thread is assigned to one core in the CPU and startsrunning, it is moved
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from the READY queue to the RUN queue. If the thread is waiting for some events, it is put into
the WAIT queue. Similarly, when the thread is waiting for time advances, it will besuspended and
moved to the WAITFOR queue. After a thread finishes its job, it will end in the COMPLETE queue.
Within the entire simulation cycles, the scheduler is called to update queues and move the simula-
tion forward whenever events are delivered or time increases [6]. At any time the RUN queue is not
full, the scheduler will pick up the next thread to run from the READY queuerandomly. When the
READY queue becomes empty, it would be filled again by waking up threads in the WAIT queue
who have received events they were waiting for. In this case, threads are moving from WAIT queue
to READY queue and a delta-cycle is advanced. If the READY queue is still empty after waking
up all the available threads in the WAIT queue, a new timed-cycle begins and some threads with the
earliest timestamp in the WAITFOR queue are migrated to the READY queue. If nomore threads
are available in the WAITFOR queue and the READY queue is still empty, the simulation program
terminates. Figure 3 shows a complete flow chart of Discrete Event (DE) simulation with delta and
timed cycles specified.

Figure 3: Traditional Discrete Event Simulation Scheduler [9]

Parallel Discrete Event Simulation (PDES) is an enhancement of the traditional Discrete Event
(DE) simulation, which has the potential to efficiently map the explicit parallelism in the system
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model onto the parallel cores available on the simulation host [10]. Comparedwith the Discrete
Event Simulation, the scheduler will issue as many threads from the READY queue as CPU cores
are available in each cycle. Even though several threads are busy running on different CPUs, there
is only one centralized scheduler for the whole simulation program to maintain thesimulation se-
mantics. An extended control flow of the Parallel Discrete Event Simulation is shown in Figure
4.

Figure 4: Parallel Discrete Event Simulation Scheduler [9]

In order to protect the shared scheduling resources in the simulation engine (including the thread
queues and event lists, and shared variables in communication channels ofthe application model
[6]), one central lock (mutex) is necessary to ensure the mutually exclusive access by the concurrent
threads. As the length of READY queue (the number of threads blocked atthe same time) varies
with time due to thread creation or migration among different queues, synchronization primitives
such as barriers are not suitable in this case. Thus, as described in Figure 5, a thread in the parallel
simulation program will grab the centralized lock whenever it needs to updatethe shared scheduling
resources. Also as soon as the thread finishes the scheduling task (Go(schedule)in Figure 5) and
begins to perform any functions in the application model, it will release the centralized mutex and
run in parallel with other threads.

1.2.2 Software Stack of SpecC Simulators

SystemC and SpecC are two examples of the System Level Description Languages (SLDL). Both of
them use the Discrete Event approach to implement simulations. However, as the threading model in
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Figure 5: Lifecycle of a Thread in Parallel Discrete Event Simulation [6]

SpecC is explicitly specified as preemptive, it carries the promise of utilizing theavailable hardware
resources on a multi-core host to increase the simulation performance. Therefore, Parallel Discrete
Event Simulation (PDES) is also utilized in SpecC to implement parallel simulators. Currently
there are two major synchronization paradigms in the SpecC parallel simulators,synchronous and
out-of-order (asynchronous) [7]. Synchronous PDES ensuresin-order event execution while out-
of-order model will proceed as long as every event is safe. Out-of-order PDES can be faster than
the synchronous one as it breaks the temporal barriers which preventeffective parallel execution.
However, the synchronous paradigm is more stable and predictive at thecurrent stage. So in this
technical report we will only aim at the thread library used in regular synchronous Parallel Discrete
Event Simulation (PDES).

The software stack of the SpecC Discrete Event (DE) simulator is shown onFigure 6. The
application is transformed from SpecC programs, by replacing the structural and behavioral blocks
with corresponding structs in the simulation library. The simulation library provides these structural
and behavioral structs and is responsible for the scheduling of the simulation program. The thread
library is invoked by the simulation library to achieve thread manipulations like creation and context
switching. The thread library in turn calls Linux OS APIs to fulfill the specific functionalities. At
the bottom, created threads will run on the hardware units (CPUs) to performtheir work.
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Figure 6: Software Stack of SpecC Simulators

1.2.3 Problem Definition

In this technical report, we will focus on the thread library in the software stack of the SpecC
parallel simulators, as highlighted in the red box in Figure 6. In other words,we will utilize the
original Discrete Event (DE) simulation engine in the SpecC development environment but design
and implement a compatible thread library to achieve higher efficiency in threadmanipulation.
The threading model will not modify any scheduling mechanism in the original simulator but be
designed to reduce the overheads in thread creation/deletion and contextswitching. In order to
utilize the full hardware resources on the multiprocessor hosts, the underlying operating system
needs to be aware of the multiple simulation threads running in parallel and a kernel-level thread
library is necessary.

1.3 Goals

To implement a thread library for efficient ESL simulators in the SpecC development environment,
a number of goals are identified as follows:

• Efficiency: The new thread library should combine the benefits of PosixThreads and Quick-
Threads, as shown in Figure 7. As such, the hybrid approach should,on multi-core machines,
reach a minimum performance similar to PosixThreads, and on single-core machines, similar
performance as QuickThreads.

• Parallelism: In order to utilize the power of available multiple processors, the new thread
library must truly support multi-core hosts and parallel simulation of the designmodel.

• Compatibility: As the threading library is part of the SpecC Discrete Event (DE) simulators,
we could not make the implementation completely free of restrictions but had to follow a
certain interface (function interface to simulation library). Also, the new thread library must
be replaceable with the original PosixThreads library and follow the simulationsemantics
specified in the SpecC parallel simulators.
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• Portability: The new thread library should limit the machine-dependent code and be portable
to a number of platforms.

• Accuracy: The simulation should always be correct regardless of the scale of the model.

The relationship among the new thread library, PosixThreads and QuickThreads is shown in
Figure 7.

Figure 7: Relationship Among Three Thread Libraries

1.4 Related Work

How to accelerate the simulation speed of Electronic System Level models has been a well-studied
subject for the past few years. While the single threaded simulation kernelinherent to System-Level
Description Languages (SLDL) [11] prevents it from utilizing the parallelcomputation resources
available in today’s common multi-core CPUs, [6] [7] [8] [11] [18] extend the simulation kernels
in the System-Level Description Languages to speed up system simulation on multi-core machines.
Specifically, [6] and [11] attempt to parallelize simulation engine by executing several threads con-
currently in the evaluation phase of Discrete Event Simulation (DES) and utilizing as many cores
as possible. In [8], the simulation schedulers are distributed to every processing node and run a
subset of the application modules. To guarantee the simulation semantics, all local schedulers need
to synchronize both channel and time at the end of each delta cycle. However, the partitioning of
the application must be done by the designer manually. Compared with [8], [18] proposes a cen-
tralized master thread for scheduling and a group of worker threads to utilize the parallel computing
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power on multicore CPUs. While the centralized scheduler is responsible forsynchronization and
communication, the execution of SystemC processes can be partially or in total offloaded onto the
pool of worker threads. Based on these researches, [11] breaksthe simulation-cycle barriers and let
data-independent threads run asynchronously and in parallel.

Even though all these approaches can speed up ESL simulation, they make improvements on
the simulation models. In contrast, [17] presents a DE simulation modeling strategywith a cor-
responding thread model. The key idea is to break the bottleneck of a centralized scheduler and
a global simulation time in SystemC. Then each group of threads has its distributedtime and all
the synchronization and communication is accomplished with timed messages. The partitioning of
the threads is explicitly controlled by the design and the same group of threadsare executing on
the same physical core. Above each physical CPU, there is an associated Posix thread for local
scheduling, and a group of Quick threads executing simulation tasks. The software architecture of
this SystemC distributed simulation engines is as shown in Figure 8.

Figure 8: Software Architecture of the SystemC Distributed Simulator [17]

The technical report [14] and [16] talked about the implementation and evaluation of a native
Linux-based thread library for fast embedded system simulation. This newcustom thread library
named LiteThreads takes advantages of native components in Linux operating system, achieving
low overhead of thread initialization and manipulation. Specifically, theclonesystem call is used to
create new threads and Linux futex (Fast User Space Mutex) providesthe necessary synchronization
primitives in the thread library. As the features of Posix threads are cut down in cloneand context
switching could be sometimes completed in the userspace, the LiteThreads library owns a better
performance than the regular PosixThreads. This conclusion is validatedby the simulation results
in [14]. The software stack of the SpecC simulator using LiteThreads is shown in Figure 9.

Even though LiteThreads has superior performance to PosixThreads,it does not support parallel
simulation. As lots of features of PosixThreads are eliminated in the LiteThreads package, several
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Figure 9: Software Stack of SpecC Parallel Simulator using LiteThreads [16]

Linux functions (such asmallocandprintf ) which depend on the kernel structs in Posix threads will
fail in the parallel simulator using LiteThreads. So currently LiteThreads only supports the SpecC
sequential simulator.

The remainder of this technical report is organized in the following manner.First, we will
propose a new hybrid mode of parallel thread library to integrate the advantages of both kernel
threads and user threads. Then, to demonstrate the mechanisms of the new thread library, a parallel
program is used to illustrate the simulation process. Finally, we utilize several parallel benchmarks
and embedded applications to evaluate the performance of the hybrid threadlibrary.

2 Basic Principles of HybridThreads

2.1 Motivation for the HybridThreads Library

Based on the introduction and evaluation in [15], we can conclude the features of QuickThreads,
ContextThreads and PosixThreads as shown in Figure 10.

Figure 10: Comparison of Popular Thread Libraries

As indicated in Figure 10, kernel-level thread library such as PosixThreads can guarantee to
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work right on multiprocessor machines but performs poorly due to the load on the system. Quick-
Threads and ContextThreads are implemented on top of kernel threads, which perform well but
have deficiency in parallel execution. With the adventure of the multiprocessor machines, a natural
extension to utilize the power of multiple processors as well as guarantee the computation perfor-
mance is to integrate the PosixThreads (kernel-level) library and QuickThreads (user-level) library,
which is the basic idea of the new HybridThreads library [13]. The threadmapping model of the
new thread library is shown as Figure 11.

Figure 11: HybridThreads Threading Model [19]

2.2 Mechanisms of the HybridThreads Library

2.2.1 Basic Ideas of the HybridThreads Library

One basic requirement of the SpecC Parallel Discrete-Event Simulation scheduler is to utilize all
the hardware resources on the multi-core hosts. Hence, kernel-level threads library is necessary for
the SpecC parallel simulation engine. However, as outlined in [15] and Section 2.1, the kernel-
level thread library is too heavyweight and the high cost of kernel-leveloverhead will burden the
whole simulators. Based on the simulation results in [15], it is obvious that PosixThreads library is
10 times slower than QuickThreads. In order to utilize the full power of multiprocessor machines
and alleviate the overhead in thread initialization and synchronization, a straightforward idea is
to combine the kernel-level thread library and user-level thread library.The user threads that are
completely managed by the userspace cannot run in parallel on differentCPUs, although they will
achieve a great performance in computation on uniprocessor system. On the other hand, due to the
usage of kernel scheduler, kernel-level threads can run in different cores but the synchronization
and sharing resources among threads are more expensive than user-level threads. When we build
the user-level threads (Quick threads) above kernel-level threads (Posix threads), the new thread
library will combine the advantages of both thread libraries. This is just whatwe implemented as
the HybridThreads library.

11



In HybridThreads, the thread library will create no more kernel-level (Posix) threads than the
number of available CPU cores. These kernel-level threads are affiliated to the CPU cores in a
one-to-one mode. They are used to manage all the kernel data structs andsynchronization among
different processors. The Linux OS would be only aware of these kernel-level threads and they exist
from the beginning to the end of the simulation. For all the userspace threadscreated by the parallel
simulator, they are treated as user-level (Quick) threads and manipulated through the thread’s stack
pointer. All of these user-level threads are mapped to the CPU cores andrunning sequentially above
each kernel-level thread. Thus, a ”full” user-level thread library is running on each CPU core, and
just working as what QuickThreads usually does. In the thread initialization, only the thread’s stack
is updated with the new execution context. During a context switch, a helper function saves the
register values and program counter of the old thread on to its stack, and then switches to the stack
of the new thread and invokes the client function on behalf of the new thread. Only when it needs
to communicate or synchronize among different processors, the kernel-level threads are used to
guarantee the safety and integrity of the concurrent execution. Therefore, as long as there are enough
threads running on one core and they only communicate with each other, the new HybridThreads
library has a similar performance as QuickThreads on each core. The synchronization and sharing
resources would incur some overheads in user and kernel level, but itwould be compensated by
the performance enhancement brought by parallel execution. The newsoftware hierarchy of SpecC
parallel simulators is indicated in Figure 12.

Figure 12: New Software Stack of SpecC Parallel Simulators

2.2.2 Work-stealing vs. Work-sharing

Work-stealing [2] is a good scheduling algorithm to balance the work load ondifferent processors.
When a core is idle, it will choose another core and attempt to steal tasks from that core. Generally
speaking, a work-stealing scheduler can achieve near-optimal scheduling in an environment which
exposes approximately 10 tasks for each core and has poorly-balanced workload over different
cores. In contrast, a work-sharing [1] scheduler is preferred in a dedicated environment with a well-
balanced workload. Besides, when using work-sharing, the scheduler usually assigns the threads to
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each core from a thread-pool, in a round-robin fashion to take advantage of code-locality.
As the SpecC PDES scheduler makes use of a centralized READY queue and only issues as

many threads as CPU cores are available, the new HybridThreads libraryadopts work-sharing
scheduler to assign tasks to each processor. On average, there is onlyone thread available on
each core, and when one core has no more useful work to perform, thesimulator will pick up a
new thread from the centralized READY queue and assign it to the idle processor. In this case,
work-sharing schedulers work more efficiently than work-stealing ones.

2.3 Simulation Process of a Parallel Program using HybridThreads

In order to better explain the mechanisms of the HybridThreads library, we will first illustrate the
data structures used in HybridThreads, and then describe a simulation process of a parallel program
which is based on HybridThreads.

Figure 13 illustrates the data structures for the kernel-level threads and user-level threads in
HybridThreads, as well as the global variables used to keep HybridThreads working correctly.
PThreadbaseholds all the properties of a kernel-level thread in HybridThreads, andthreadbase
is used for the user-level threads. Remarkably, each kernel-level thread is locked to a specific
core and the number ofPThreadbaseis as many as the available cores in the machine. In the
view of the SpecC parallel simulator, athreadbaseinstance refers to a thread in the program and
PThreadbaseis invisible to the simulation scheduler. Specifically,QThreadStartandQThreadEnd
in PThreadbasepoint to the first and last user-level thread (threadbase) above this Posix thread.
In threadbase, PThreadPtrpoints back to the kernel-level thread andPrevThreadBaseandNext-
ThreadBaseare used to build a double linked list to manipulate all the user-level threads running on
one kernel-level thread (core). When a user-level thread finishes,PrevThreadBaseandNextThread-
Basein its data structure are set to NULL to break from the double linked list.

Among all the global variables,ActivePThreadsandActiveQThreadsare used to keep record
of the number of active kernel-level threads and user-level threads.BusyPThreadsis the number of
current busy Posix threads in the program whileMaxPThreadsis the maximum number of active
kernel-level threads during the simulation. As discussed in Section 2.2.1, atany time the number of
Posix threads should be no more than the number of available CPU cores in themachine. In the five
arrays, each item holds the status of the kernel-level threads and user-level threads on each core.
TheRootThreadkeeps the synchronization primitives of the root thread.

Next, we list the code of a short parallel SpecC program to describe howHybridThreads works.
List 1 gives the code and Figure 14 to 20 describe the whole simulation process of the example.

Listing 1: A Parallel SpecC Program
1 / / par . sc
2
3 # inc lude <s t d i o . h>
4 # inc lude <a s s e r t . h>
5
6 b e h a v i o r A
7 {
8 vo id main (vo id )
9 {

10 f o r ( i n t i ; i <100; i ++ ) ;
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11 }
12 } ;
13
14 b e h a v i o r B
15 {
16 vo id main (vo id )
17 {
18 f o r ( i n t i ; i <200; i ++ ) ;
19 }
20 } ;
21
22 b e h a v i o r Main
23 {
24 A A1 ;
25 B B1 ;
26 A A2 ;
27 B B2 ;
28 A A3 ;
29 B B3 ;
30
31 i n t main (vo id )
32 {
33 p u t s ( ” pa r : S t a r t i n g . . . ” ) ;
34
35 par { A1 . main ( ) ;
36 B1 . main ( ) ;
37 A2 . main ( ) ;
38 B2 . main ( ) ;
39 A3 . main ( ) ;
40 B3 . main ( ) ;
41 } ;
42
43 p u t s ( ” pa r : Done . ” ) ;
44 re turn ( 0 ) ;
45 }
46 } ;
47
48 / / EOF

In this SpecC example, there will be 6 threads running in parallel. At the beginning of the
simulation, HybridThreads will initialize all the global variables in the thread library, and allocate
memory space for ArraysActivePThreadPtr, IdleIndexand so on (Figure 14.1 and 14.2). To create
the root thread, only an instance ofthreadbaseis created and points to the global structRootThread
(Figure 14.3). When thepar() structure begins, four kernel-level threads are created along with the
user-level threads. At that time, all the user-level threads are floating and the kernel-level threads
are idle too. All these kernel-level threads are affiliated to one core eachin the machine and are
tracked by a corresponding item inActivePThreadPtr. The global variablesActiveQThreadsand
ActivePThreadsare incremented accordingly when we create a new user-level thread and kernel-
level thread. As all the kernel-threads are still idle at this time,BusyPThreadsremains zero and
IdleIndexis initialized with the index of the idle Posix threads (ReverseIndexholds each idle Posix
thread’s index inIdleIndex). This process is illustrated in Figures 14.4 to 15.10. For the remaining
threads A3 and B3, since the host machine (mu) has only 4 cores, they are only created as user-
level threads (Figure 15.11 and 14.12). According to the control flow illustrated in Figure 4, four
child threads will be issued and they will attach to four idle kernel-level threads respectively (Figure

14



16.13 to 16.17).BusyPThreadsis incremented as a new kernel-level thread becomes busy. Then
these four kernel-level threads will be running simultaneously. In Figures 16.18 to 17.21, when
one thread (thread B1 and thread A3) is done, the parallel scheduler willwake up another user-
level thread (thread A3 and thread B3) before it dies. As all other Posixthreads are busy, the new
userspace thread will attach to the current core and continue executing after switching the thread’s
stack. After all the six threads are issued, the kernel-level thread (thread A2 in Figure 17.22, B3 in
Figure 17.24, B2 in Figure 18.27 and A1 in Figure 18.29) will be suspendedwhen it finishes the
userspace function in the user-level thread. If we are going to delete theterminated child threads (in
Figures 19.31 to 19.36), the thread library needs to copy the execution context of the last user-level
thread (thread A1, A2, B2 and B3) above each Posix thread toLegacyQThreadPtr. The reason
is that all the Posix threads are suspended in the userspace thread’s stack. When the simulation
terminates (Figure 20.37 to 20.39), all the active Posix threads and remainingexecution contexts in
LegacyQThreadPtrare cleaned up. Meanwhile, all the data and structs in HybridThreads arefreed.

15



(a) Data Structures for kernel-level Threads and user-
level Threads

(b) Global Variables in HybridThreads (Part 1)

(c) Global Variables in HybridThreads (Part 2)

Figure 13: Data Structures in HybridThreads
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(1) (2)

(3) (4)

(5) (6)

Figure 14: Simulation Process of HybridThreads (Part 1)
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(7) (8)

(9) (10)

(11) (12)

Figure 15: Simulation Process of HybridThreads (Part 2)
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(13) (14)

(15) (16)

(17) (18)

Figure 16: Simulation Process of HybridThreads (Part 3)
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(19) (20)

(21) (22)

(23) (24)

Figure 17: Simulation Process of HybridThreads (Part 4)
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(25) (26)

(27) (28)

(29) (30)

Figure 18: Simulation Process of HybridThreads (Part 5)
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(31) (32)

(33) (34)

(35) (36)

Figure 19: Simulation Process of HybridThreads (Part 6)
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(37) (38)

(39)

Figure 20: Simulation Process of HybridThreads (Part 7)
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2.4 Implementations of the Programming Interface in HybridThreads

The whole HybridThreads library is implemented in C++ and assembly language(the machine-
dependent code in QuickThreads package). As the HybridThreads library has the same program-
ming interface as the regular parallel PosixThreads library, it can be easily inserted into the existing
SpecC simulator. The basic interface in the SpecC parallel simulator consists of functions to create,
delete, suspend and wake up threads, which we will describe in detail in thefollowing sections.

2.4.1 Thread Creation

vo id s p e c c : : t h r e a db a s e : : Th readCrea te ( t h r e a df c t Func t ion , t h r e a da r g Arg )

The HybridThreads library will first allocate a block of memory space for the stack of the new
thread. If the current number of kernel-level threads is less than that of available cores, a new Posix
thread is created. No matter a Posix thread is created or not, the newly allocated thread’s stack
is initialized with the new thread function and arguments (Function& Arg). Figure 21 shows the
control flow of theThreadCreatefunction.

Figure 21: Control Flow of ThreadCreate

2.4.2 Thread Deletion

vo id s p e c c : : t h r e a db a s e : : Th readDe le te (vo id )

In theThreadDeletefunction, it will only delete the user-level thread. If the underlying kernel-
level thread is suspended in the execution context of this user-level thread, we need to save the
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context onto some global structures and free up that context only after the kernel-level thread is
waken up or the whole program is terminated. Otherwise, we would simply deallocate the stack and
delete the user-level thread.

Figure 22: Control Flow of ThreadDelete

2.4.3 Thread Suspension

vo id s p e c c : : t h r e a db a s e : : Wait (vo id )

TheWait function in the HybridThreads library is used to switch to a new user-level thread. If
no more userspace thread is available on the current Posix thread, the kernel-level thread will be
suspended by the conditional variable. In the other case, it will simply savethe current context to
the stack of the old thread and continue executing another.

Figure 23: Control Flow of Wait
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2.4.4 Thread Wakeup

vo id s p e c c : : t h r e a db a s e : : Go(vo id )

When there are some idle cores or kernel-level threads, HybridThreads library will assign the
new user-level thread to these cores. In case that all the kernel-levelthreads are busy, the new
userspace thread will be run on the current core to avoid race conditions and protect consistency of
sharing resources.

Figure 24: Control Flow of Go
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3 Performance Evaluation of HybridThreads

To demonstrate the performance of the new thread library, we will first utilizetwo parallel bench-
marks to test different aspects of the thread library, and then make use ofthree real-world embedded
applications to evaluate the simulation speed of the HybridThreads library. Allthe benchmarks and
applications are running on two 32-bit Linux machines, which have Intel(R)Core(TM) 2 Quad ar-
chitecture Q9650 3.0 GHz CPU (namedmu) and Intel(R) Xeon(R) architecture X5650 2.66 GHz
CPU (namedxi) respectively. Figure 25 and 26 illustrate the architectures of the two processors.
The dashed line in the middle of the processor means that the CPU has the hyperthreading feature
enabled [14].

Figure 25: Intel Core 2 Quad architecture, Q9650 (mu) [14]

Figure 26: Intel Xeon architecture, X5650 (xi) [14]
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3.1 Simulation Results for Parallel Benchmarks

For the HybridThreads library, we use a Producer-Consumer example tomeasure the performance
of context switching and a highly parallel benchmark which calculates Fibonacci number in each
thread (named Fibo20, Fibonacci number calculation with a maximum parallelism of 20). The
Fibo20 benchmark is designed to test the parallel computation performance ofthe regular Posix-
Threads and new HybridThreads simulators. Hence, Fibo20 has only pure computation but no
communication among parallel threads.

3.1.1 Producer-Consumer Model

Table 1: Simulation Results for Producer-Consumer Model

Hostname Usr Time Sys Time Elapsed Time CPU Load Thread Library
26.85s 0 26.87s 99.00% QuickThreads
34.11s 14.22s 48.35s 99.00% ContextThreads

mu 84.8s 189.48s 274.38s 99.00% PosixThreads
233.21s 110.85s 413.37s 83.00% Parallel PosixThreads
210.56s 75.98s 387.01s 74.00% HybridThreads
22.08s 0 22.14s 99.00% QuickThreads
28.75s 9.79s 38.65s 99.00% ContextThreads

xi 63.6s 231.25s 295.66s 99.00% PosixThreads
146.75s 282.02s 429.51s 99.00% Parallel PosixThreads
262.36s 235.17s 510.12s 97.00% HybridThreads

Figure 27: Simulation Results for Producer-Consumer Model on mu

The first parallel benchmark, Producer-Consumer model, is a simple example which features in-
tensive context switching. During the whole simulation, the program will create only three threads:
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Figure 28: Simulation Results for Producer-Consumer Model on xi

a Producer, a Consumer and a Monitor. The Producer instance is repeatedly sending data to the
Consumer through a double-handshake channel. This communication is wrapped up in a large loop
and the monitor will terminate the whole program when all the communication is done.Hence,
this example has a limited amount of parallelism but a heavyweight of thread synchronization. The
exact code of the Producer-Consumer model is listed in [15].

Figure 27 to 28 list the simulation results for the Producer-Consumer benchmark. As the
Producer-Consumer model has a limited amount of parallelism (only one thread running at any
time), the overhead of parallel simulation burdens the system and both the parallel thread libraries
are slower than the sequential ones. Between the two parallel simulators, they have similar perfor-
mance on the models which have intensive context switching. Specifically, HybridThreads library
is worse than PosixThreads onxi as it has a higher user-level overhead.

Table 2: Simulation Results for Prod-Cons Model (SPECCNUM SIMCPUS=1)

Hostname Usr Time Sys Time Elapsed Time CPU Load Thread Library
26.85s 0s 26.87s 99.00% QuickThreads
34.11s 14.22s 48.35s 99.00% ContextThreads

mu 84.8s 189.48s 274.38s 99.00% PosixThreads
344.8s 198.43s 736.14s 73.00% Parallel PosixThreads
70.26s 8.36s 78.65s 99.00% HybridThreads
22.08s 0s 22.14s 99.00% QuickThreads
28.75s 9.79s 38.65s 99.00% ContextThreads

xi 63.6s 231.25s 295.66s 99.00% PosixThreads
218.95s 435.84s 725.8s 90.00% Parallel PosixThreads
46.5s 7.75s 54.45s 99.00% HybridThreads

In the SpecC parallel simulator, we can reconfigure the number of simulation cores (SPECC
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Figure 29: Simulation Results for Prod-Cons Model on mu (SPECCNUM SIMCPUS=1)

Figure 30: Simulation Results for Prod-Cons Model on xi (SPECCNUM SIMCPUS=1)

NUM SIMCPUS) to adjust the performance. For the Producer-Consumer Model, when we only
use one core to simulate the example, the performance of HybridThreads library improves a lot.
On Figure 29 and 30 (also in Table 2), HybridThreads has a close performance to QuickThreads as
the context switching is quite similar and only runs in the user level. For the parallel PosixThreads
library, it is much worse as it still switches to kernel level in thread scheduling.

3.1.2 Fibo20 Model

Appendix A.1 lists the code of Fibo20. In each thread of Fibo20, it calculates the same Fibonacci
series in recursion and there are no data dependencies between different threads. Recall that a
Fibonacci number is the sum of the previous two Fibonacci numbers and therecursive calculation
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Table 3: Simulation Results for Fibo20 Model

Hostname Usr Time Sys Time Elapsed Time CPU Load Thread Library
234.1s 0.26s 234.45s 99.00% QuickThreads
227.19s 0.29s 227.55s 99.00% ContextThreads

mu 230.97s 1.81s 233.04s 99.00% PosixThreads
266.11s 4.36s 95.93s 281.00% Parallel PosixThreads
233.3s 1.09s 60.04s 390.00% HybridThreads
160.04s 0.17s 160.69s 99.00% QuickThreads
160.25s 0.18s 160.92s 99.00% ContextThreads

xi 160.59s 1.65s 162.89s 99.00% PosixThreads
442.41s 7.54s 58.05s 775.00% Parallel PosixThreads
396.05s 2.38s 23.92s 1665.00% HybridThreads

Figure 31: Simulation Results for Fibo20 Model on mu

of a large Fibonacci number is very computation intensive. Plus that the parallel threads have no
inter-thread communication, this benchmark extremely favors the parallel simulators. As indicated
in the source code, a maximum parallelism of 20 is available in this model.

As expected for the highly parallel Fibo20 benchmark, the performance of the parallel simula-
tors improves tremendously. The HybridThreads library has a speedup of 3.7 onmu and 7.3 onxi
over the sequential QuickThreads library. Compared with the regular PosixThreads library, the new
thread library is about 33% faster onmu and 61% onxi machine.

As the Fibo20 example has a large amount of explicit parallelism, we draw a scalability figure
of Parallel PosixThreads and HybridThreads on Figure 33. From the graph, it is easily seen that the
new HybridThreads library always has a smaller elapsed time than PosixThreads, with the number
of simulation cores varying from 1 to 30. Also, in most cases, the speedupsof HybridThreads are
higher than PosixThreads. Even though, the new thread library has onedrawback as well: there
are some bumps in both the elapsed time and relative speedup of HybridThreads, which shows that
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Figure 32: Simulation Results for Fibo20 Model on xi

Figure 33: Scalability Figure for Fibo20 Model on xi

HybridThreads library is less consistent than PosixThreads. One possible reason for these ”ups
and downs” is that we map threads to cores straightforwardly (one after one in a sequence) in
HybridThreads and these threads will be affected by other processesin Linux OS to a larger extent
than PosixThreads. Later in the future we will make improvement on this issue and map threads in
a more wise and efficient manner. Table 4 and 5 list the specific statistics about the scalability figure
of PosixThreads and HybridThreads libraries.
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Table 4: Scalability Figure of Parallel PosixThreads for Fibo20 Model onxi

# of Cores Usr Time Sys Time Elapsed Time CPU Load Speedup
1 298.7s 5.48s 307.1s 99.00% 1
2 372.54s 6.9s 198.97s 190.00% 1.54
3 362.05s 6.44s 139.3s 264.00% 2.2
4 363.64s 6.73s 107.99s 342.00% 2.84
5 355.43s 6.35s 89.3s 405.00% 3.44
6 346.92s 6.41s 77.18s 457.00% 3.98
7 370.32s 6.62s 74.09s 508.00% 4.14
8 385.92s 6.62s 68.71s 571.00% 4.47
9 396.81s 6.42s 65.45s 616.00% 4.69
10 414.1s 6.59s 62.14s 676.00% 4.94
11 423.53s 6.51s 61.05s 704.00% 5.03
12 428.17s 7.01s 59.54s 730.00% 5.16
13 428.14s 6.7s 59.19s 734.00% 5.19
14 431.96s 7.04s 58.2s 754.00% 5.28
15 435.83s 7.23s 58.45s 758.00% 5.25
16 435.97s 7.36s 57.88s 765.00% 5.31
17 437.28s 7.33s 58.36s 761.00% 5.26
18 436.79s 7.49s 58.18s 763.00% 5.28
19 437.47s 7.7s 58.16s 765.00% 5.28
20 441.46s 6.94s 58.36s 768.00% 5.26
21 441.56s 7.24s 58.05s 773.00% 5.29
22 443.01s 7.18s 58.24s 772.00% 5.27
23 441.21s 7.49s 58.19s 771.00% 5.28
24 440.49s 7.24s 57.89s 773.00% 5.3
25 441.91s 7.18s 58.36s 769.00% 5.26
26 442.07s 7.14s 58.31s 770.00% 5.27
27 441.07s 7.44s 58.01s 773.00% 5.29
28 440.59s 7.24s 57.92s 773.00% 5.3
29 442.16s 7.19s 58.22s 771.00% 5.27
30 441.73s 7.16s 58.21s 771.00% 5.28
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Table 5: Scalability Figure of HybridThreads for Fibo20 Model on xi

# of Cores Usr Time Sys Time Elapsed Time CPU Load Speedup
1 157.2s 0.72s 158.59s 99.00% 1
2 203.69s 1.06s 105.06s 194.00% 1.51
3 204.54s 1.03s 71.84s 286.00% 2.21
4 195.04s 0.99s 51.639s 379.00% 3.07
5 198.27s 1.05s 42.62s 467.00% 3.72
6 193.5s 1.08s 36.33s 535.00% 4.37
7 199.47s 1.02s 32.47s 617.00% 4.88
8 220.33s 1.46s 30.68s 722.00% 5.17
9 300.18s 1.93s 46.83s 645.00% 3.39
10 221.87s 1.57s 24.32s 918.00% 6.52
11 300.5s 2.14s 31.97s 946.00% 4.96
12 300.85s 2.25s 32.01s 946.00% 4.95
13 321.35s 2.26s 32.04s 1009.00% 4.95
14 341.76s 2.28s 32.05s 1073.00% 4.95
15 362.12s 2.4s 32.05s 1137.00% 4.95
16 327.13s 2.06s 26.84s 1226.00% 5.91
17 395.13s 2.49s 30.98s 1283.00% 5.12
18 422.28s 2.55s 31.94s 1329.00% 4.97
19 442.29s 2.7s 31.95s 1392.00% 4.96
20 453.97s 2.6s 27.22s 1677.00% 5.83
21 351.13s 2.26s 21.47s 1645.00% 7.39
22 430.09s 2.43s 25.83s 1674.00% 6.14
23 410.55s 2.43s 24.66s 1674.00% 6.43
24 457.98s 2.61s 27.24s 1690.00% 5.82
25 426.65s 2.47s 25.7s 1669.00% 6.17
26 345.44s 2.22s 21.12s 1645.00% 7.51
27 399.37s 2.44s 23.83s 1686.00% 6.66
28 441.94s 2.59s 26.51s 1676.00% 5.98
29 304.37s 2.01s 18.42s 1662.00% 8.61
30 403.11s 2.45s 24.22s 1674.00% 6.55
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3.2 Simulation Results for Embedded Applications

Next we will demonstrate the simulation performance of the new HybridThreads library for three
actual embedded system applications.

3.2.1 JPEG Image Encoder

Figure 34: Block Diagram for JPEG Encoder [5]

Table 6: Simulation Results for JPEG Encoder

Hostname Usr Time Sys Time Elapsed Time CPU Load Thread Library
2.23s 0.05s 2.29s 99.00% QuickThreads
2.16s 0.1s 2.26s 99.00% ContextThreads

mu 2.27s 0.36s 2.64s 99.00% PosixThreads
3.78s 0.76s 3.35s 135.00% Parallel PosixThreads
3.98s 0.65s 3.4s 136.00% HybridThreads
1.99s 0.03s 2.03s 99.00% QuickThreads

2s 0.06s 2.07s 99.00% ContextThreads
xi 2.27s 0.36s 2.65s 99.00% PosixThreads

4.5s 1.43s 3.92s 151.00% Parallel PosixThreads
4.43s 1.12s 3.8s 146.00% HybridThreads
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Figure 35: Simulation Results for JPEG Encoder on mu

Figure 36: Simulation Results for JPEG Encoder on xi

The JPEG image encoder is a widely used application in embedded systems. After reading a
block of image from a BMP file, it will first separate it into three color components. Then the pro-
gram processes the color components through DCT, Quantization, and Zigzag in parallel. Finally,
these three components are encoded in Huffman coding algorithm and combined into a single image
[4]. Figure 34 shows the block diagram of the JPEG encoder.

As the available parallelism in JPEG encoder is very low (maximal 3 parallel threads and fol-
lowed by a significant sequential part), the performance of the two parallel thread libraries is inferior
to the sequential ones as shown in Figure 35 and 36. Between the two parallel thread libraries, Hy-
bridThreads is slightly better than PosixThreads onxi but worse onmu for the higher user time.
As we can modify the number of simulation cores to reconfigure the parallel thread libraries, Fig-
ure 37 and 38 show some more simulation results in the case that the parallel PosixThreads and
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HybridThreads simulators are running on one core (or in other words, running in ”sequential”
mode). Under such circumstances, the HybridThreads library has a similarperformance as the
QuickThreads while the parallel PosixThreads simulator is burdened by theheavyweight load of
system overhead.

Table 7: Simulation Results for JPEG Encoder (SPECCNUM SIMCPUS=1)

Hostname Usr Time Sys Time Elapsed Time CPU Load Thread Library
2.23s 0.05s 2.29s 99.00% QuickThreads
2.16s 0.1s 2.26s 99.00% ContextThreads

mu 2.27s 0.36s 2.64s 99.00% PosixThreads
3.78s 0.5s 4.53s 94.00% Parallel PosixThreads
2.34s 0.04s 2.38s 99.00% HybridThreads
1.99s 0.03s 2.03s 99.00% QuickThreads

2s 0.06s 2.07s 99.00% ContextThreads
xi 2.27s 0.36s 2.65s 99.00% PosixThreads

4.43s 1.17s 5.81s 96.00% Parallel PosixThreads
2.27s 0.04s 2.32s 99.00% HybridThreads

Figure 37: Simulation Results for JPEG Encoder on mu (SPECCNUM SIMCPUS=1)
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Figure 38: Simulation Results for JPEG Encoder on xi (SPECCNUM SIMCPUS=1)
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3.2.2 H.264 AVC Decoder with Parallel Slice Decoding

Figure 39: Block Diagram of H.264 AVC Decoder [9]

Figure 39 shows the block diagram of the H.264 Advanced Video Coding (AVC) decoder. The
design model begins with reading a new frame from the input stream. The frames are then split into
four slices and decoded in parallel [12]. Remarkably, there are no datadependencies between these
four slices so that these four slices are fully parallel. After all slices are done, a synchronizer block
filters the decoded frame to complete the decoding. Figure 40 and 41 list the simulation results for
the H.264 Decoder on two machines.

Table 8: Simulation Results for H.264 Decoder

Hostname Usr Time Sys Time Elapsed Time CPU Load Thread Library
175.7s 2.65s 180.96s 98.00% QuickThreads
172.82s 2.75s 176.64s 99.00% ContextThreads

mu 174.82s 3.11s 178.94s 99.00% PosixThreads
1968s 5.21s 127.54s 157.00% Parallel PosixThreads
194.2s 4.62s 124.01s 160.00% HybridThreads
162.82s 2.18s 167.13s 98.00% QuickThreads
163.24s 2.57s 167.23s 99.00% ContextThreads

xi 164.58s 3.42s 169.99s 98.00% PosixThreads
321.91s 5.8s 209.85s 156.00% Parallel PosixThreads

320s 5.52s 207.94s 156.00% HybridThreads

On mu machine, both the parallel simulators have similar performance, and achieve aspeedup
of 1.45 over the sequential QuickThreads simulator. However, as thexi machine has many more
cores than mu (24 vs. 4) and the user level overhead is much higher onxi, the parallel simulators
on xi perform poorly with regard to the sequential simulators. But after configuring the number of
simulation cores to be one, the new HybridThreads have a performance very close to the sequential
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Figure 40: Simulation Results for H.264 Decoder on mu

Figure 41: Simulation Results for H.264 Decoder on xi

QuickThreads library, even though that the regular parallel PosixThreads library performs worse
than before.

Table 9: Simulation Results for H.264 Decoder (SPECCNUM SIMCPUS=1)

Hostname Usr Time Sys Time Elapsed Time CPU Load Thread Library
162.82s 2.18s 167.13s 98.00% QuickThreads
163.24s 2.57s 167.23s 99.00% ContextThreads

xi 164.58s 3.42s 169.99s 98.00% PosixThreads
311.15s 5.74s 319.61s 99.00% Parallel PosixThreads
164.04s 3.02s 169.94s 98.00% HybridThreads
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Figure 42: Simulation Results for H.264 Decoder on xi (SPECCNUM SIMCPUS=1)
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3.2.3 H.264 AVC Encoder

As a third real-world embedded system application, we have the H.264 AVC Encoder which is
converted from the reference C code and has a maximum of 30 frames processed in parallel. The
parallel parts happen during the luminance and chrominance pixel residual coding and motion vector
search for multiple reference frames [3]. However as there are heavydependencies among the
current block and the left, up and up-left blocks in the image, the available parallelism is quite
limited in this application. The simulation results of the five thread libraries are shown in Figure 43
and 44.

Table 10: Simulation Results for H.264 Encoder

Hostname Usr Time Sys Time Elapsed Time CPU Load Thread Library
2368.59s 29.86s 2399.35s 99.00% QuickThreads
2356.86s 13.19s 2370.94s 99.00% ContextThreads

mu 2364.02s 57.74s 2428.41s 99.00% PosixThreads
2966.02s 143.11s 1823.64s 170.00% Parallel PosixThreads
2779.07s 51.75s 1546.93s 182.00% HybridThreads
2268.89s 19.83s 2294.93s 99.00% QuickThreads
2251.5s 9.61s 2267.24s 99.00% ContextThreads

xi 2261.52s 53.54s 2326.73s 99.00% PosixThreads
5820.55s 203.17s 1978.13s 304.00% Parallel PosixThreads
6473.3s 131.28s 1812.12s 364.00% HybridThreads

Figure 43: Simulation Results for H.264 Encoder on mu

Analyzing Figure 43 we can conclude that the parallel HybridThreads achieve a performance
speedup of 1.31 over the sequential QuickThreads library and 1.24 over the parallel PosixThreads
library onmu machine. However, onxi machine, the performance of the HybridThreads library is
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Figure 44: Simulation Results for H.264 Encoder on xi

very ”unstable” as shown on Figure 45. Notice that different runs of the same simulation result in
very different measured execution times.

Recall the processor architecture ofxi as shown in Figure 26, after configuring all the user
threads to run on each physical core individually (Figure 46), on one side (Figure 47) and on each
physical core of one side individually (Figure 48), we can conclude that the performance incon-
sistency of the HybridThreads library originates from the asymmetrical communication overhead
among different cores and the hyperthreading features. Clearly, it becomes necessary in future
work to address this ”unstability” by analyzing the inter-thread communication and mapping them
to the CPU cores such that communication and synchronization are minimized. For the ”stable” Hy-
bridThreads (SPECCNUM SIMCPUS=6), it has a similar performance as other thread libraries
on Figure 49. When the HybridThreads library is running in sequential mode(Figure 50), it has an
identical performance as QuickThreads.

Table 11: Simulation Results of HybridThreads on xi (SPECCNUM SIMCPUS=24)

Hostname Usr Time Sys Time Elapsed Time CPU Load Thread Library
6473.3s 131.28s 1812.12s 364.00%
4351.96s 58.84s 3730.8s 118.00%

xi 4352.45s 59.31s 3730.74s 118.00% HybridThreads
4352.13s 59.75s 3736.23s 118.00%
4352.91s 61.48s 3575.33s 121.00%
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Figure 45: Simulation Results of HybridThreads on xi (SPECCNUM SIMCPUS=24)

Table 12: Simulation Results of HybridThreads on xi (core 0, 1, 2, ..., 11)

Hostname Usr Time Sys Time Elapsed Time CPU Load Thread Library
4358.95s 79.74s 1765.1s 251.00%
4353.94s 62.33s 2706.05s 163.00%

xi 4349.17s 60.08s 2874.86s 153.00% HybridThreads
4356.25s 80.65s 1765.22s 251.00% (core 0,1,2,...,11)
4355.04s 80.53s 1763.93s 251.00%

Figure 46: Simulation Results of HybridThreads on xi (core 0, 1, 2, ..., 11)
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Table 13: Simulation Results of HybridThreads on xi (core 0, 2, 4, ..., 22)

Hostname Usr Time Sys Time Elapsed Time CPU Load Thread Library
6723.55s 82.7s 2012.48s 338.00%
4343.05s 54.83s 2890.15s 152.00%

xi 6724.97s 83.21s 2012.87s 338.00% HybridThreads
6725.81s 82.26s 2013.54s 338.00% (core 0,2,4,...,22)
4341.04s 55s 2888.65s 152.00%

Figure 47: Simulation Results of HybridThreads on xi (core 0, 2, 4, ..., 22)

Table 14: Simulation Results of HybridThreads on xi (core 0, 2, 4, ..., 10)

Hostname Usr Time Sys Time Elapsed Time CPU Load Thread Library
4342.36s 54.31s 2360.76s 186.00%
4335.22s 54.4s 2357.52s 186.00%

xi 4343.75s 55.4s 2361.92s 186.00% HybridThreads
4342.16s 55.52s 2361.66s 186.00% (core 0,2,4,,10)
4339.63s 54.99s 2359.19s 186.00%

Table 15: Simulation Results for H.264 Encoder on xi (SPECCNUM SIMCPUS=6)

Hostname Usr Time Sys Time Elapsed Time CPU Load Thread Library
2268.89s 19.83s 2294.93s 99.00% QuickThreads
2251.5s 9.61s 2267.24s 99.00% ContextThreads

xi 2261.52s 53.54s 2326.73s 99.00% PosixThreads
4740.68s 183.64s 2238.9s 219.00% Parallel PosixThreads
4342.36s 54.31s 2360.76s 186.00% HybridThreads
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Figure 48: Simulation Results of HybridThreads on xi (core 0, 2, 4, ..., 10)

Figure 49: Simulation Results for H.264 Encoder on xi (SPECCNUM SIMCPUS=6)

Table 16: Simulation Results for H.264 Encoder on xi (SPECCNUM SIMCPUS=1)

Hostname Usr Time Sys Time Elapsed Time CPU Load Thread Library
2268.89s 19.83s 2294.93s 99.00% QuickThreads
2251.5s 9.61s 2267.24s 99.00% ContextThreads

xi 2261.52s 53.54s 2326.73s 99.00% PosixThreads
4318.02s 169.27s 4560.35s 98.00% Parallel PosixThreads
2265.02s 21.58s 2292.81s 99.00% HybridThreads
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Figure 50: Simulation Results for H.264 Encoder on xi (SPECCNUM SIMCPUS=1)
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3.3 Time Profiling of the HybridThreads Library

On Figure 27, 28, 31, 32 and etc., it is shown that the user time and system time of parallel thread li-
braries (Parallel PosixThreads and HybridThreads) are always larger than those of sequential thread
libraries (QuickThreads, ContextThreads and PosixThreads). In order to find out which part of the
simulation program brings in the increments, we measured the locking time for the centralized mu-
tex and running time in the application model. Table 17, 18, 19 and 20 show this timinginformation
of HybridThreads library for all the benchmarks and examples onmu andxi.

Table 17: Time Profiling of HybridThreads on mu

Benchmark Usr Time Sys Time Elapsed Time Lock Time App Time % in Lock
Prod-Cons 220.1s 81s 405.75s 286.37s 39.97s 87.75%

Fibo20 232.42s 1.1s 59.75s 0.32s 231.75s 0.14%
JPEG Encoder 4.02s 0.64s 3.42s 1.18s 3.58s 24.75%
H.264 Decoder 193.94s 4.67s 123.9s 1.15s 198.03s 0.58%
H.264 Encoder 2777.62s 50.15s 1545.28s 11.56s 2774.65s 0.41%

Table 18: Time Profiling of HybridThreads on mu (SPECCNUM SIMCPUS=1)

Benchmark Usr Time Sys Time Elapsed Time Lock Time App Time % in Lock
Prod-Cons 75.1s 8.02s 83.16s 4.22s 20.7s 16.92%

Fibo20 231.47s 1.15s 232.72s 0.08s 230.67s 0.03%
JPEG Encoder 2.35s 0.03s 2.39s 0.01s 2.25s 0.36%
H.264 Decoder 175.57s 4.06s 180.3s 0.01s 179.54s 0.01%
H.264 Encoder 2371.01s 31.15s 2403.1s 0.21s 2367.48s 0.01%

Table 17 and 18 list the time profiling of HybridThreads onmu machine. The first four columns
show the user time, system time and elapsed time of all five examples measured by the Linux time
command. The fifth column lists the locking time for the centralized mutex and sixth column shows
the total time in the application model (sum of all parallel threads), which are measured by inserting
timestamps before and after the locking functions and application models. The difference between
Table 17 and 18 is that all examples in Table 17 are running with the maximum number of simula-
tion cores while examples in 18 are on only one core. From these two tables, itshows that except for
the Producer-Consumer (Prod-Cons in the tables) model which has intensive thread synchronization
and almost no computation, all other benchmarks spend most of their time in the application model
(”useful time” in simulation). The locking time for the centralized mutex (”wasted time”) is always
quite short and is less than 1% (shown in the seventh column) of the sum of useful time (time in
application model) and wasted time (locking time for centralized mutex). For the JPEG Encoder ex-
ample, as the computation is quite simple and there exists a lot of communication between threads,
the percentage of locking time is about 25%. When the number of simulation cores is restricted to
be only one, the locking time is decreased tremendously as the mutex in a sequential program is
always available and can be locked immediately when one thread is trying to grab the lock.
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Table 19: Time Profiling of HybridThreads on xi

Benchmark Usr Time Sys Time Elapsed Time Lock Time App Time % in Lock
Prod-Cons 231.61s 270.38s 514.34s 326.4s 56.99s 85.14%

Fibo20 419.14s 2.33s 25.53s 6.49s 418.02s 1.53%
JPEG Encoder 4.42s 1.17s 3.8s 1.59s 4s 28.44%
H.264 Decoder 319.99s 5.64s 208.49s 1.85s 324.35s 0.57%
H.264 Encoder 4354.77s 62.96s 3595.21s 68.09s 4344.98s 1.54%

Table 20: Time Profiling of HybridThreads on xi (SPECCNUM SIMCPUS=1)

Benchmark Usr Time Sys Time Elapsed Time Lock Time App Time % in Lock
Prod-Cons 50.22s 8.37s 58.79s 3.19s 12.25s 20.66%

Fibo20 157.1s 0.7s 158.45s 0.21s 156.75s 0.13%
JPEG Encoder 2.06s 0.03s 2.11s 0.01s 2s 0.50%
H.264 Decoder 163.06s 2.87s 167.84s 0.01s 166.66s 0.01%
H.264 Encoder 2266.73s 21.5s 2294.44s 0.21s 2262.27s 0.01%

On Table 19 and 20, they show the same timing information onxi machine, which is also quite
similar to those onmu. The locking time for the centralized mutex is only a small part of the total
simulation time for most benchmarks. The large amount of time in application models might result
from more page faults in the application data structs and heavier communication overhead among
cores. To minimize these overheads, improvements should be made on the thread-to-core mapping
and number of simulation cores in the future.

4 Conclusion

4.1 Summary

In this technical report we discussed the design and implementation of a new hybrid mode of thread
library — HybridThreads. HybridThreads library integrates the kernel-level (PosixThreads) thread
library with the user-level (QuickThreads) thread library to improve the simulation performance
and guarantee multiprocessor access. The traditional kernel-level threads can run on multiple CPUs
at the same time, but the system load of maintaining sharing resources and safe synchronization
among different threads will burden the performance of the application. After building the user-
level threads above kernel-level threads, the context switching among the user-level threads on
the same kernel-level thread is completely managed by the userspace library. Only when there is
synchronization between two different kernel-level threads, the thread library will call the in-kernel
scheduler. In this way, the system overhead of thread manipulation is reduced and a performance
speedup of more than 1.4 is achieved over the sequential thread library for some parallel system-
level applications.
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4.2 Lessons Learned

During the implementation of HybridThreads library, we learned more about the features of the
user-level threads and kernel-level threads. The management of the user-level threads requires no
kernel intervention and they are also invisible to the OS kernel. These properties of the user-level
threads reduce the cost of manipulating user-level threads but also decide that user-level threads
cannot run in parallel. On the other hand, kernel threads are created and scheduled by the operating
system kernel. Thus, the kernel-level thread library will place a more balanced load on multiple
processors but also bring to the application heavy load of synchronization among threads. A good
trade-off to design the thread library is to combine the features of both the kernel-level threads
library and user-level threads library.

From the simulation results listed in Section 3.1 and 3.2, we can conclude that the implemented
HybridThreads library has the following advantages: when the applicationhas a high level of par-
allelism and the sequential part is insignificant, the new thread library performs superior and even
enables more cores to run simultaneously (as indicated in the CPU load in Table 31 and 32); the map-
ping of the user-level threads is totally managed by the user-level scheduler and thus the userspace
application has a better control of the thread-to-core mapping; in the case that the parallelism is lim-
ited in the program, HybridThreads can be reconfigured easily by modifying the maximum number
of simulation cores and achieve a higher performance close to QuickThreads. Of course the Hy-
bridThreads library brings in some user-level overhead for the parallel execution, but it is adjustable
and can be configured to achieve the ”best” performance for a given application.

4.3 Limitations and Future Work

Based on the simulation results for the H.264 AVC Encoder application, we canfind that the current
thread-to-core mapping in HybridThreads is quite simple (picks up the next thread to run and at-
taches it to an available kernel-level thread in a First-Come-First-Serve manner). In some cases, the
new thread library would perform poorly as the userspace runtime libraryhas no knowledge about
the kernel and underlying hardware architecture. While the kernel-level thread in the HybridThreads
library will stay on a core for its lifetime, the user-level threads will migrate among different cores
as scheduled directly by the userspace library. In the future, we shoulddevelop a more sophisticated
and dynamic mapping mechanism to optimize the many-threads-to-many-cores mapping (as Figure
51) and minimize the inter-thread communication. In addition, the current HybridThreads library
is constructed by integrating PosixThreads and QuickThreads. We can extend the same ideas de-
scribed here to integrate PosixThreads with other user-level thread library, say ContextThreads, so
as to improve the portability and fit more platforms.
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Figure 51: Two Level Threading Model [19]
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A Benchmark Examples

A.1 Fibo20 Model

Listing 2: Fibo20 Model
1 / / F ibo20 . sc : p a r a l l e l F ibonacc i benchmark
2 / / au tho r : Ra iner Doemer , Guantao L iu
3 / / 02 /15 /13 GL m o d i f i e d t o t e s t Hybr idThreads l i b r a r y
4 / / 09 /02 /11 RD c r e a t e d t o t e s t p a r a l l e l s i m u l a t o r s
5
6 # inc lude <s t d i o . h>
7 # inc lude <s t d l i b . h>
8 # inc lude <sim . sh>
9

10 / / number o f t h r e a d s
11 # i f n d e f MAXLOOP
12 # d e f i n e MAXLOOP 5000
13 # end i f
14
15 / / va l u e o f F ibonacc i number
16 # d e f i n e FIBONUM 25
17
18 / / t y p e o f F ibonacc i numbers
19 t ypede f unsigned long long number ;
20
21 number f i b o ( number n )
22 {
23 i f ( n <= 1)
24 re turn n ;
25 e l s e
26 re turn f i b o ( n−1) + f i b o ( n−2);
27 }
28
29 b e h a v i o r F ibo
30 {
31 number r e s u l t ;
32
33 vo id main (vo id )
34 {
35 r e s u l t = f i b o (FIBONUM ) ;
36 }
37 } ;
38
39
40 b e h a v i o r Main
41 {
42 Fibo f ibo0 , f i bo1 , f i bo2 , f i bo3 , f i bo4 , f i bo5 , f i bo6 , f i bo7 , f i bo8 , f i bo9 ,
43 f ibo10 , f ibo11 , f ibo12 , f ibo13 , f ibo14 , f ibo15 , f ibo16 ,f ibo17 , f ibo18 , f i b o 1 9 ;
44
45 i n t main (vo id )
46 {
47 i n t i ;
48 p r i n t f ( ” F i b o p a r [%d,%d ] s t a r t i n g . . . \n” , FIBONUM, MAXTHREAD) ;
49 f o r ( i = 0 ; i < MAXLOOP; i ++)
50 {
51 par { f i b o 0 ; f i b o 1 ; f i b o 2 ; f i b o 3 ; f i b o 4 ; f i b o 5 ; f i b o 6 ; f i b o 7 ; f i bo 8 ; f i b o 9 ;
52 f i b o 1 0 ; f i b o 1 1 ; f i b o 1 2 ; f i b o 1 3 ; f i b o 1 4 ; f i b o 1 5 ; f i b o 1 6 ;f i b o 1 7 ; f i b o 1 8 ; f i b o 1 9 ;
53 }
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54 }
55 p r i n t f ( ”Done !\n” ) ;
56 re turn ( 0 ) ;
57 }
58 } ;
59
60 / / EOF Fibo20 . sc

B Measured Simulation Times for All Benchmarks and Applications

B.1 Simulation Time for Producer-Consumer Model

Table 21: Producer-Consumer Model on mu

Hostname Usr Time Sys Time Elapsed Time CPU Load Thread Library
26.78s 0 26.79s 99.00%
26.97s 0 26.99s 99.00%

mu 26.91s 0 26.92s 99.00% QuickThreads
26.85s 0 26.87s 99.00%
26.83s 0 26.84s 99.00%
34.27s 14.04s 48.34s 99.00%
34.24s 14.06s 48.32s 99.00%

mu 34.54s 14.23s 48.79s 99.00% ContextThreads
34.41s 14.1s 48.53s 99.00%
34.11s 14.22s 48.35s 99.00%
84.8s 191.57s 276.46s 99.00%
84.49s 189.62s 274.21s 99.00%

mu 84.8s 189.48s 274.38s 99.00% PosixThreads
84.22s 188.86s 273.18s 99.00%
84.16s 191.44s 275.69s 99.00%
236.43s 93.18s 410.56s 80.00%
224.66s 104.16s 416.52s 78.00%

mu 202.11s 112.24s 390.27s 80.00% Parallel PosixThreads
266.14s 83.42s 424.93s 82.00%
233.21s 110.85s 413.37s 83.00%
193.4s 96.95s 385.78s 75.00%
208.85s 76.48s 384.89s 74.00%

mu 204.59s 83.63s 387.25s 74.00% HybridThreads
209.94s 77s 387.99s 73.00%
210.56s 75.98s 387.01s 74.00%
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Table 22: Producer-Consumer Model on xi

Hostname Usr Time Sys Time Elapsed Time CPU Load Thread Library
22.11s 0 22.17s 99.00%
22.08s 0 22.15s 99.00%

xi 22.08s 0 22.14s 99.00% QuickThreads
22.04s 0 22.11s 99.00%
21.8s 0 21.86s 99.00%
28.44s 10.04s 38.6s 99.00%
28.57s 10.05s 38.74s 99.00%

xi 28.82 10.28s 39.22s 99.00% ContextThreads
28.75s 9.79s 38.65s 99.00%
28.1s 10.16s 38.37s 99.00%
63.86s 233.22s 297.9s 99.00%
63.6s 231.25s 295.66s 99.00%

xi 65.28s 228.73s 294.82s 99.00% PosixThreads
63.05s 229.41s 293.27s 99.00%
64.88s 234.53s 300.24s 99.00%
188.41s 209.21s 408.22s 97.00%
161.07s 227.13s 393.82s 98.00%

xi 222.07s 238.68s 464.63s 99.00% Parallel PosixThreads
146.75s 282.02s 429.51s 99.00%
177.25s 313.18s 490.11s 100.00%
261.72s 230.66s 510.3s 96.00%
219.23s 268.58s 506.34s 96.00%

xi 181.58s 319.82s 514.88s 97.00% HybridThreads
262.36s 235.17s 510.12s 97.00%
261.31s 231.72s 507.92s 97.00%

Table 23: Producer-Consumer Model on mu (SPECCNUM SIMCPUS=1)

Hostname Usr Time Sys Time Elapsed Time CPU Load Thread Library
320.09s 211.83s 722.31s 73.00%
308.93s 237.57s 724.76s 75.00%

mu 344.8s 198.43s 736.14s 73.00% Parallel PosixThreads
349.03s 192.26s 750.98s 72.00%
337.18s 200.36s 736.8s 72.00%
71.19s 8.7s 79.92s 99.00%
70.26s 8.36s 78.65s 99.00%

mu 70.16s 7.71s 77.91s 99.00% HybridThreads
70.95s 8.7s 79.69s 99.00%
69.06s 7.97s 77.07s 99.00%
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Table 24: Producer-Consumer Model on xi (SPECCNUM SIMCPUS=1)

Hostname Usr Time Sys Time Elapsed Time CPU Load Thread Library
199.08s 435.93s 696.22s 91.00%
249.23s 421.64s 747.61s 89.00%

xi 218.95s 435.84s 725.8s 90.00% Parallel PosixThreads
241.24s 425.59s 738.63s 90.00%
252.27s 381.4s 693.59s 91.00%
46.64s 7.46s 54.29s 99.00%
46.5s 7.75s 54.45s 99.00%

xi 46.56s 8.14s 54.89s 99.00% HybridThreads
46.58s 7.66s 54.44s 99.00%
48.83s 7.55s 56.58s 99.00%
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B.2 Simulation Time for Fibo20 Model

Table 25: Fibo20 Model on mu

Hostname Usr Time Sys Time Elapsed Time CPU Load Thread Library
234.56s 0.25s 234.89s 99.00%
233.92s 0.25s 234.25s 99.00%

mu 234.55s 0.28s 234.91s 99.00% QuickThreads
234.1s 0.26s 234.45s 99.00%
234.92s 0.27s 235.27s 99.00%
227.14s 0.31s 227.53s 99.00%
227.64s 0.28s 228.01s 99.00%

mu 227.19s 0.29s 227.55s 99.00% ContextThreads
227.4s 0.31s 227.79s 99.00%
226.78s 0.32s 227.18s 99.00%
230.84s 1.83s 232.93s 99.00%
230.97s 1.81s 233.04s 99.00%

mu 230.82s 1.86s 232.94s 99.00% PosixThreads
231.19s 1.8s 233.25s 99.00%
231.11s 1.84s 233.2s 99.00%
265.7s 4.32s 96.43s 280.00%
266.48s 4.23s 95.75s 282.00%

mu 266.11s 4.3s 95.92s 281.00% Parallel PosixThreads
266.08s 4.35s 95.96s 281.00%
266.11s 4.36s 95.93s 281.00%
232.97s 1.32s 60s 390.00%
234.49s 0.85s 60.12s 391.00%

mu 233.93s 1.19s 60.02s 391.00% HybridThreads
234.44s 0.9s 60.18s 391.00%
233.3s 1.09s 60.04s 390.00%
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Table 26: Fibo20 Model on xi

Hostname Usr Time Sys Time Elapsed Time CPU Load Thread Library
160.06s 0.16s 160.69s 99.00%
159.93s 0.14s 160.55s 99.00%

xi 160.05s 0.15s 160.7s 99.00% QuickThreads
159.92s 0.15s 160.57s 99.00%
160.04s 0.17s 160.69s 99.00%
160.27s 0.2s 160.93s 99.00%
160.11s 0.2s 160.79s 99.00%

xi 160.13s 0.18s 160.8s 99.00% ContextThreads
160.25s 0.18s 160.92s 99.00%
160.4s 0.21s 161.09s 99.00%
160.59s 1.65s 162.89s 99.00%
160.66s 1.65s 162.94s 99.00%

xi 160.55s 1.66s 162.86s 99.00% PosixThreads
160.42s 1.67s 162.74s 99.00%
160.76s 1.65s 163.06s 99.00%
442.41s 7.54s 58.05s 775.00%
443.12s 7.33s 57.83s 778.00%

xi 443.54s 7.15s 58.24s 773.00% Parallel PosixThreads
443.79s 7.11s 58.25s 774.00%
442.93s 7.21s 57.93s 777.00%
396.056s 2.38s 23.92s 1665.00%
424.37s 2.54s 25.5s 1674.00%

xi 380.2s 2.35s 23.06s 1658.00% HybridThreads
431.17s 2.62s 25.93s 1672.00%
380.74s 2.32s 22.96s 1668.00%

Table 27: Fibo20 Model on mu (SPECCNUM SIMCPUS=1)

Hostname Usr Time Sys Time Elapsed Time CPU Load Thread Library
350.37s 4.17s 356.44s 99.00%
350.53s 4.25s 356.63s 99.00%

mu 351.01s 4.16s 356.97s 99.00% Parallel PosixThreads
350.98s 4.15s 356.94s 99.00%
350.78s 4.13s 356.8s 99.00%
231.74s 1.39s 233.25s 99.00%
231.1s 0.84s 232.03s 99.00%

mu 231.06s 1.43s 232.61s 99.00% HybridThreads
231.19s 0.87s 232.16s 99.00%
231.5s 1.38s 233s 99.00%
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Table 28: Fibo20 Model on xi (SPECCNUM SIMCPUS=1)

Hostname Usr Time Sys Time Elapsed Time CPU Load Thread Library
298.96s 5.14s 306.91s 99.00%
299.06s 5.16s 307.08s 99.00%

xi 298.55s 5.54s 306.87s 99.00% Parallel PosixThreads
298.66s 5.52s 307.13s 99.00%
299.21s 4.86s 306.84s 99.00%
157.19s 0.74s 158.62s 99.00%
157.19s 0.7s 158.5s 99.00%

xi 157.12s 0.73s 158.54s 99.00% HybridThreads
157.02s 0.71s 158.4s 99.00%
157.23s 0.69s 158.6s 99.00%
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B.3 Simulation Time for JPEG Encoder

Table 29: JPEG Encoder on mu

Hostname Usr Time Sys Time Elapsed Time CPU Load Thread Library
2.24s 0.04s 2.3s 99.00%
2.23s 0.05s 2.29s 99.00%

mu 2.24s 0.04s 2.29s 99.00% QuickThreads
2.23s 0.05s 2.29s 99.00%
2.23s 0.05s 2.29s 99.00%
2.16s 0.09s 2.26s 99.00%
2.16s 0.09s 2.26s 99.00%

mu 2.15s 0.1s 2.26s 99.00% ContextThreads
2.17s 0.09s 2.26s 99.00%
2.16s 0.1s 2.26s 99.00%
2.28s 0.35s 2.64s 99.00%
2.25s 0.38s 2.64s 99.00%

mu 2.29s 0.33s 2.64s 99.00% PosixThreads
2.27s 0.36s 2.64s 99.00%
2.27s 0.36s 2.64s 99.00%
3.77s 0.74s 3.32s 136.00%
3.76s 0.75s 3.34s 135.00%

mu 3.78s 0.76s 3.35s 135.00% Parallel PosixThreads
3.77s 0.78s 3.35s 135.00%
3.78s 0.77s 3.36s 135.00%

4s 0.63s 3.4s 136.00%
3.97s 0.65s 3.41s 135.00%

mu 3.97s 0.66s 3.4s 136.00% HybridThreads
3.98s 0.65s 3.4s 136.00%
4.01s 0.61s 3.39s 136.00%
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Table 30: JPEG Encoder on xi

Hostname Usr Time Sys Time Elapsed Time CPU Load Thread Library
2.21s 0.03s 2.26s 99.00%
1.98s 0.03s 2.02s 99.00%

xi 1.99s 0.03s 2.03s 99.00% QuickThreads
2.19s 0.04s 2.24s 99.00%
1.99s 0.02s 2.02s 99.00%
2.02s 0.03s 2.06s 99.00%

2s 0.06s 2.07s 99.00%
xi 2.21s 0.05s 2.3s 98.00% ContextThreads

2.23s 0.06s 2.33s 98.00%
1.99s 0.06s 2.06s 99.00%
2.08s 0.35s 2.45s 99.00%
2.08s 0.35s 2.44s 99.00%

xi 2.26s 0.4s 2.67s 99.00% PosixThreads
2.27s 0.36s 2.65s 99.00%
2.29s 0.36s 2.66s 99.00%
4.32s 1.19s 3.7s 149.00%
4.5s 1.43s 3.92s 151.00%

xi 4.75s 1.29s 4.01s 150.00% Parallel PosixThreads
4.58s 1.29s 3.82s 153.00%
4.56s 1.38s 4.05s 146.00%
4.37s 0.99s 3.7s 145.00%
4.43s 1.12s 3.8s 146.00%

xi 4.44s 1.11s 3.79s 146.00% HybridThreads
4.43s 1.14s 3.8s 146.00%
4.44s 1.14s 3.81s 146.00%

Table 31: JPEG Encoder on mu (SPECCNUM SIMCPUS=1)

Hostname Usr Time Sys Time Elapsed Time CPU Load Thread Library
3.78s 0.5s 4.53s 94.00%
3.76s 0.47s 4.48s 94.00%

mu 3.81s 0.48s 4.57s 94.00% Parallel PosixThreads
3.68s 0.5s 4.4s 94.00%
3.68s 0.46s 4.4s 94.00%
2.33s 0.04s 2.38s 99.00%
2.33s 0.05s 2.38s 99.00%

mu 2.33s 0.04s 2.38s 99.00% HybridThreads
2.34s 0.04s 2.39s 99.00%
2.34s 0.04s 2.38s 99.00%
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Table 32: JPEG Encoder on xi (SPECCNUM SIMCPUS=1)

Hostname Usr Time Sys Time Elapsed Time CPU Load Thread Library
4.43s 1.17s 5.81s 96.00%
4.4s 1.21s 5.82s 96.00%

xi 4.36s 1.28s 5.86s 96.00% Parallel PosixThreads
4.26s 1.34s 5.79s 96.00%
4.45s 1.17s 5.79s 97.00%
2.3s 0.03s 2.34s 99.00%
2.27s 0.03s 2.32s 99.00%

xi 2.27s 0.03s 2.32s 99.00% HybridThreads
2.27s 0.03s 2.32s 99.00%
2.27s 0.04s 2.32s 99.00%
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B.4 Simulation Time for H.264 Decoder

Table 33: H.264 Decoder on mu

Hostname Usr Time Sys Time Elapsed Time CPU Load Thread Library
175.61s 2.46s 181.59s 98.00%
175.54s 2.8s 179.76s 99.00%

mu 175.6s 2.72s 180.35s 98.00% QuickThreads
175.7s 2.65s 180.96s 98.00%
175.74s 2.8s 182.33s 97.00%
172.82s 2.75s 176.64s 99.00%
172.83s 2.75s 176.63s 99.00%

mu 172.8s 2.73s 177.01s 99.00% ContextThreads
172.84s 2.71s 176.6s 99.00%
172.85s 2.79s 176.81s 99.00%
174.88s 2.96s 179.61s 99.00%
174.95s 3.05s 178.82s 99.00%

mu 174.96s 2.96s 181.54s 98.00% PosixThreads
174.82s 3.11s 178.94s 99.00%
174.83s 3.04s 178.72s 99.00%
196.65s 3.69s 126.83s 157.00%

196s 5.21s 127.54s 157.00%
mu 196.64s 5.31s 128.48s 157.00% Parallel PosixThreads

195.95s 5.32s 127.28s 158.00%
196.27s 5.15s 127.64s 157.00%
194.35s 4.52s 123.58s 160.00%
194.16s 4.52s 124.13s 160.00%

mu 193.82s 4.59s 123.5s 160.00% HybridThreads
194.2s 4.62s 124.01s 160.00%
193.77s 4.55s 124.27s 159.00%
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Table 34: H.264 Decoder on xi

Hostname Usr Time Sys Time Elapsed Time CPU Load Thread Library
162.67s 1.82s 165.06s 99.00%
162.82s 2.18s 167.13s 98.00%

xi 163.09s 2.8s 167.67s 98.00% QuickThreads
162.33s 2.87s 167.21s 98.00%
162.78s 2.85s 166.33s 99.00%
163.24s 2.57s 167.23s 99.00%
163.75s 2.71s 167.15s 99.00%

xi 163.26s 2.56s 167.85s 98.00% ContextThreads
163.18s 2.74s 167.02s 99.00%
163.18s 2.74s 167.73s 98.00%
164.63s 4.04s 170.43s 98.00%
164.71s 3.88s 170.06s 99.00%

xi 164.1s 3.36s 168.92s 99.00% PosixThreads
164.58s 3.42s 169.99s 98.00%
164.3s 3.38s 168.32s 99.00%
320.81s 5.88s 208.94s 156.00%
320.64s 5.9s 210.3s 155.00%

xi 321.75s 5.95s 210.18s 155.00% Parallel PosixThreads
321.91s 5.8s 209.85s 156.00%
319.16s 5.77s 208.79s 155.00%
319.47s 5.27s 207.12s 156.00%
319.61s 5.6s 207.62s 156.00%

xi 319.82s 5.54s 208.64s 155.00% HybridThreads
319.79s 5.4s 208.01s 156.00%

320s 5.52s 207.94s 156.00%

Table 35: H.264 Decoder on xi (SPECCNUM SIMCPUS=1)

Hostname Usr Time Sys Time Elapsed Time CPU Load Thread Library
311.34s 5.56s 319.01s 99.00%
311.66s 5.85s 319.75s 99.00%

xi 311.05s 6.03s 319.67s 99.00% Parallel PosixThreads
311.5s 5.66s 319.03s 99.00%
311.15s 5.74s 319.61s 99.00%
164.48s 2.69s 170.08s 99.00%
164.04s 3.02s 169.94s 98.00%

xi 163.39s 3.16s 168.75s 98.00% HybridThreads
164.69s 3.71s 169.94s 99.00%
164.77s 3.58s 172.72s 97.00%
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B.5 Simulation Time for H.264 Encoder

Table 36: H.264 Encoder on mu

Hostname Usr Time Sys Time Elapsed Time CPU Load Thread Library
2368.49s 29.87s 2399.27s 99.00%
2368.59s 29.86s 2399.35s 99.00%

mu 2368.79s 29.68s 2399.37s 99.00% QuickThreads
2368.26s 30.18s 2399.34s 99.00%
2368.04s 29.92s 2398.86s 99.00%
2356.69s 13.13s 2370.7s 99.00%
2356.9s 13s 2370.79s 99.00%

mu 2356.86s 13.19s 2370.94s 99.00% ContextThreads
2357.26s 13.99s 2372.36s 99.00%
2357.37s 13.13s 2371.44s 99.00%
2364.12s 57.71s 2428.51s 99.00%
2364.12s 57.7s 2428.53s 99.00%

mu 2364.02s 57.74s 2428.41s 99.00% PosixThreads
2363.91s 57.59s 2428.17s 99.00%
2364.17s 57.25s 2428.07s 99.00%
2964.86s 142.94s 1823.44s 170.00%
2965.45s 142.11s 1822.57s 170.00%

mu 2966.02s 143.11s 1823.64s 170.00% Parallel PosixThreads
2965.78s 142.79s 1823.65s 170.00%
2964.64s 144.12s 1824.45s 170.00%
2770.74s 51.84s 1575.23s 179.00%
2778.79s 51.21s 1548.9s 182.00%

mu 2775.37s 50.92s 1545.12s 182.00% HybridThreads
2779.07s 51.75s 1546.93s 182.00%
2778.08s 50.49s 1546.41s 182.00%
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Table 37: H.264 Encoder on xi

Hostname Usr Time Sys Time Elapsed Time CPU Load Thread Library
2269.93s 20.05s 2296.19s 99.00%
2268.89s 19.83s 2294.93s 99.00%

xi 2268.9s 20.13s 2295.24s 99.00% QuickThreads
2268.62s 20.09s 2294.92s 99.00%
2268.45s 20.23s 2294.9s 99.00%
2252.25s 9.42s 2267.81s 99.00%
2250.49s 9.46s 2266.09s 99.00%

xi 2251.55s 9.53s 2267.21s 99.00% ContextThreads
2251.93s 9.56s 2267.62s 99.00%
2251.5s 9.61s 2267.24s 99.00%
2259.43s 53.53s 2324.73s 99.00%
2259.28s 53.95s 2325.03s 99.00%

xi 2261.52s 53.54s 2326.73s 99.00% PosixThreads
2261.91s 54.58s 2328.16s 99.00%
2262.16s 55.01s 2328.82s 99.00%
5817.07s 206.59s 1976.63s 304.00%
5820.55s 203.17s 1978.13s 304.00%

xi 5823.13s 204.95s 1976.75s 304.00% Parallel PosixThreads
5835.46s 205.86s 1984.39s 304.00%
5838.96s 202.43s 1978.37s 305.00%
6473.3s 131.28s 1812.12s 364.00%
4351.96s 58.84s 3730.8s 118.00%

xi 4352.45s 59.31s 3730.74s 118.00% HybridThreads
4352.13s 59.75s 3736.23s 118.00%
4352.91s 61.48s 3575.33s 121.00%

Table 38: H.264 Encoder on xi (SPECCNUM SIMCPUS=12)

Hostname Usr Time Sys Time Elapsed Time CPU Load Thread Library
5680.96s 200.43s 2077.6s 283.00%
5672.61s 201.47s 2076.25s 282.00%

xi 5657.28s 205.26s 2079.84s 281.00% Parallel PosixThreads
5788.42s 202.12s 2087.45s 286.00%
5749.75s 202.34s 2084.39s 285.00%
4358.95s 79.74s 1765.1s 251.00%
4353.94s 62.33s 2706.05s 163.00%

xi 4349.17s 60.08s 2874.86s 153.00% HybridThreads
4356.25s 80.65s 1765.22s 251.00% (core 0,1,2,...,11)
4355.04s 80.53s 1763.93s 251.00%
6723.55s 82.7s 2012.48s 338.00%
4343.05s 54.83s 2890.15s 152.00%

xi 6724.97s 83.21s 2012.87s 338.00% HybridThreads
6725.81s 82.26s 2013.54s 338.00% (core 0,2,4,...,22)
4341.04s 55s 2888.65s 152.00%
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Table 39: H.264 Encoder on xi (SPECCNUM SIMCPUS=6)

Hostname Usr Time Sys Time Elapsed Time CPU Load Thread Library
4740.68s 183.64s 2238.9s 219.00%
4737.38s 186.38s 2240.57s 219.00%

xi 4740.17s 187.27s 2241.21s 219.00% Parallel PosixThreads
4734.11s 179s 2235.04s 219.00%
4726.38s 182.49s 2234.29s 219.00%
4342.36s 54.31s 2360.76s 186.00%
4335.22s 54.4s 2357.52s 186.00%

xi 4343.75s 55.4s 2361.92s 186.00% HybridThreads
4342.16s 55.52s 2361.66s 186.00% (core 0,2,4,,10)
4339.63s 54.99s 2359.19s 186.00%

Table 40: H.264 Encoder on xi (SPECCNUM SIMCPUS=1)

Hostname Usr Time Sys Time Elapsed Time CPU Load Thread Library
4323.56s 171.19s 4567.59s 98.00%
4316.51s 164.35s 4553.21s 98.00%

xi 4318.02s 169.27s 4560.35s 98.00% Parallel PosixThreads
4326.82s 167.4s 4566.88s 98.00%
4319.82s 164.9s 4557.1s 98.00%
2265.09s 21.99s 2293.29s 99.00%
2265.13s 21.67s 2293.01s 99.00%

xi 2264.84s 21.52s 2292.57s 99.00% HybridThreads
2265.02s 21.58s 2292.81s 99.00%
2265.27s 21.28s 2292.75s 99.00%
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B.6 Time Profiling for All Benchmarks and Examples on mu

Table 41: Time Profiling of HybridThreads Library on mu

Benchmark Usr Time Sys Time Elapsed Time Lock Time App Time % in Lock
205.95s 98.37s 400.96s 280.92s 40.45s 87.41%
208.16s 94.4s 404.55s 284.78s 39.26s 87.89%

Prod-Cons 247.68s 70.21s 413.43s 285.2s 43.05s 86.89%
220.1s 81s 405.75s 286.37s 39.97s 87.75%
223.99s 79s 407.03s 286.53s 41.75s 87.28%
232.45s 1.13s 59.8s 0.33s 231.83s 0.14%
232.18s 1.07s 59.66s 0.31s 231.47s 0.14%

Fibo20 232.42s 1.1s 59.75s 0.32s 213.75s 0.14%
232.27s 1.1s 59.74s 0.32s 213.59s 0.14%
233.09s 1.13s 60.03s 0.36s 232.51s 0.15%
3.99s 0.67s 3.43s 1.19s 3.58s 24.93%
4.02s 0.64s 3.42s 1.18s 3.58s 24.75%

JPEG Encoder 4.04s 0.6s 3.4s 1.15s 3.57s 24.38%
3.98s 0.68s 3.42s 1.2s 3.57s 25.15%
4.07s 0.6s 3.42s 1.18s 3.57s 24.84%

2778.41s 51.63s 1549.05s 13.17s 2779.37s 0.47%
2778.2s 50.95s 1546.64s 11.47s 2776.33s 0.41%

H.264 Encoder 2777.19s 50.07s 1545.36s 11.38s 2774.19s 0.41%
2778.41s 50.13s 1546.02s 11.44s 2775.54s 0.41%
2777.62s 50.15s 1545.28s 11.56s 2774.65s 0.41%

194s 4.33s 123.52s 1.09s 197.98s 0.55%
194.04s 4.56s 125.23s 1.01s 199.71s 0.50%

H.264 Decoder 193.94s 4.67s 123.9s 1.15s 198.03s 0.58%
193.96s 4.5s 123.67s 1.1s 198s 0.55%
194.55s 4.48s 124.21s 1.1s 198.56s 0.55%
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Table 42: Time Profiling of HybridThreads Library on mu (SPECCNUM SIMCPUS=1)

Benchmark Usr Time Sys Time Elapsed Time Lock Time App Time % in Lock
75.1s 8.07s 83.21s 4.22s 20.89s 16.80%
74.85s 8.08s 82.96s 4.22s 20.84s 16.83%

Prod-Cons 75.38s 7.92s 83.33s 4.28s 21.05s 16.89%
75.1s 8.02s 83.16s 4.22s 20.7s 16.92%
74.94s 7.96s 82.94s 4.22s 21s 16.73%
231.49s 1.36s 232.97s 0.09s 230.7s 0.04%
230.94s 0.81s 231.85s 0.05s 230.2s 0.02%

Fibo20 231.47s 1.15s 232.72s 0.08s 230.67s 0.03%
230.77s 0.88s 231.75s 0.05s 230.19s 0.02%
231.73s 1.33s 233.18s 0.09s 230.9s 0.04%
2.35s 0.03s 2.39s 0.01s 2.25s 0.36%
2.34s 0.04s 2.39s 0.01s 2.26s 0.35%

JPEG Encoder 2.34s 0.04s 2.38s 0.01s 2.25s 0.36%
2.34s 0.04s 2.38s 0.01s 2.25s 0.36%
2.34s 0.04s 2.39s 0.01s 2.25s 0.36%

2371.12s 30.89s 2402.92s 0.21s 2367.28s 0.01%
2371.01s 31.15s 2403.1s 0.21s 2367.48s 0.01%

H.264 Encoder 2371.59s 31.09s 2403.59s 0.22s 2367.64s 0.01%
2370.45s 30.92s 2402.28s 0.2s 2366.62s 0.01%
2371.22s 31.04s 2403.17s 0.2s 2367.22s 0.01%
175.25s 3.94s 179.94s 0.01s 179.21s 0.01%
175.23s 4.23s 180.8s 0.01s 180.05s 0.01%

H.264 Decoder 175.28s 4.16s 179.77s 0.01s 179.01s 0.01%
175.36s 4.21s 181.47s 0.01s 180.73s 0.01%
175.57s 4.06s 180.3s 0.01s 179.54s 0.01%
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B.7 Time Profiling for All Benchmarks and Examples on xi

Table 43: Time Profiling of HybridThreads Library on xi

Benchmark Usr Time Sys Time Elapsed Time Lock Time App Time % in Lock
261.64s 247.73s 521.83s 323.31s 60.58s 84.22%
259.33s 253.84s 522.68s 321.47s 57.33s 84.87%

Prod-Cons 233.99s 266.73s 513.23s 323.73s 55.59s 85.34%
231.61s 270.38s 514.34s 326.4s 56.99s 85.14%
228.34s 273.77s 514.33s 326.87s 57.13s 85.12%
419.14s 2.33s 25.53s 6.49s 418.02s 1.53%
442.89s 2.44s 26.73s 6.5s 441.78s 1.45%

Fibo20 423.74s 2.38s 25.39s 6.3s 422.66s 1.47%
407.22s 2.18s 24.42s 6.37s 406.01s 1.54%
461.3s 2.56s 27.55s 6.69s 460.19s 1.43%
4.35s 1s 3.72s 1.33s 3.93s 25.29%
4.43s 1.18s 3.83s 1.66s 4s 29.33%

JPEG Encoder 4.43s 1.15s 3.82s 1.61s 3.99s 28.75%
4.48s 1.11s 3.8s 1.59s 4s 28.44%
4.42s 1.17s 3.8s 1.59s 4s 28.44%

4351.72s 60.19s 3735.29s 59.56s 4342.79s 1.35%
4353.78s 62.47s 3584.18s 67.6s 4344.54s 1.53%

H.264 Encoder 4354.77s 62.96s 3595.21s 68.09s 4344.98s 1.54%
4354.92s 62.52s 3581.76s 68.07s 4345.31s 1.54%
4354.03s 60.88s 3736.13s 59.41s 4344.77s 1.35%
319.73s 5.22s 207.57s 1.92s 324.16s 0.59%
319.99s 5.64s 208.49s 1.85s 324.35s 0.57%

H.264 Decoder 319.76s 5.62s 209.2s 2.26s 325.35s 0.69%
319.98s 5.47s 209.27s 1.87s 324.81s 0.57%
319.94s 5.55s 208.28s 1.85s 324.23s 0.57%
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Table 44: Time Profiling of HybridThreads Library on xi (SPECCNUM SIMCPUS=1)

Benchmark Usr Time Sys Time Elapsed Time Lock Time App Time % in Lock
49.47s 7.85s 57.52s 3.16s 12.06s 20.76%
52.47s 8.99s 61.67s 3.27s 13.77s 19.19%

Prod-Cons 50.15s 7.78s 58.15s 3.25s 12.2s 21.04%
50.22s 8.37s 58.79s 3.19s 12.25s 20.66%
50.9s 7.73s 58.84s 3.24s 12.45s 20.65%
157.1s 0.7s 158.45s 0.21s 156.75s 0.13%
157.02s 0.7s 158.39s 0.25s 156.67s 0.16%

Fibo20 157.22s 0.72s 158.65s 0.25s 156.87s 0.16%
157.02s 0.72s 158.42s 0.25s 156.67s 0.16%
157.2s 0.72s 158.61s 0.24s 156.86s 0.15%
2.31s 0.03s 2.36s 0.01s 2.23s 0.45%
2.06s 0.04s 2.11s 0.01s 2s 0.50%

JPEG Encoder 2.06s 0.03s 2.11s 0.01s 2s 0.50%
2.07s 0.03s 2.11s 0.01s 2s 0.50%
2.07s 0.03s 2.11s 0.01s 2s 0.50%

2267.7s 21.87s 2295.79s 0.19s 2263.43s 0.01%
2265.95s 21.78s 2293.94s 0.18s 2261.76s 0.01%

H.264 Encoder 2266.62s 21.83s 2294.67s 0.18s 2262.64s 0.01%
2264.95s 21.93s 2293.08s 0.2s 2260.77s 0.01%
2266.73s 21.5s 2294.44s 0.21s 2262.27s 0.01%
163.6s 3.06s 167.29s 0.01s 166.4s 0.01%
163.06s 2.87s 167.84s 0.01s 166.66s 0.01%

H.264 Decoder 163.59s 3.11s 169.12s 0.01s 167.16s 0.01%
163.33s 3.06s 167.11s 0.01s 166.22s 0.01%
163.36s 3.01s 168.38s 0.01s 167.07s 0.01%
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