
Center for Embedded Computer Systems

University of California, Irvine

An Extended Eclipse Platform
for Recoding System-Level Models

Xu Han and Rainer Dömer

Technical Report CECS-13-04

April 30, 2013

Center for Embedded Computer Systems

University of California, Irvine

Irvine, CA 92697-3425, USA

(949) 824-8059

{hanx, doemer}@uci.edu

http://www.cecs.uci.edu/

http://www.cecs.uci.edu/

An Extended Eclipse Platform
for Recoding System-Level Models

Xu Han and Rainer Dömer

Technical Report CECS-13-04

April 30, 2013

Center for Embedded Computer Systems

University of California, Irvine

Irvine, CA 92697-3425, USA

(949) 824-8059

{hanx, doemer}@uci.edu

http://www.cecs.uci.edu

Abstract

System-level design methodology is developed to manage the increasing design complexity

of embedded systems. With proper tools supporting system-level design, engineers can perform

early design space exploration and automatic refinements on a high-level specification model

of the embedded system. However, creating the initial specification model is a time-consuming

process. This report presents an extended eclipse platform to support the process of recoding

reference code into a system-level specification model. Experiments of a class of graduate stu-

dents using the tool show that the extended eclipse platform not only increases the productivity

but also reduces errors in system-level modeling and recoding.

http://www.cecs.uci.edu

Contents

1 Introduction 1

2 Eclipse Recoding Platform 3

2.1 Syntax highlighting . 3

2.2 Automatic compiling . 4

2.3 Outline and behavior hierarchy view . 4

2.4 Non-local variables view . 5

3 Experimental Results 6

3.1 Experiment setup . 6

3.2 Student distribution . 6

3.3 Average working time . 7

3.4 Model correctness . 7

3.5 Feature ratings . 8

4 Conclusion 9

References 11

A Appendix 12

A.1 EECS 222A Assignment 2 instructions . 12

A.2 EECS 222A Assignment 3 instructions . 19

A.3 EECS 222A Assignment 4 instructions . 23

A.4 Assignment 2 survey results . 28

A.5 Assignment 3 survey results . 29

A.6 Assignment 4 survey results . 30

A.7 SpecC-extended eclipse usage log . 31

i

List of Figures

1 Motivation of computer-aided recoding . 2

2 A screenshot of SpecC-extended Eclipse . 3

3 An example of using Non-local Variables View 5

4 Average working time of different tool users . 8

5 Simulation correctness of the output model from Assignment 4 9

6 Feature Ratings in Each Assignment . 10

7 Assignment 2 page 1 . 12

8 Assignment 2 page 2 . 13

9 Assignment 2 page 3 . 14

10 Assignment 2 page 4 . 15

11 Assignment 2 page 5 . 16

12 Assignment 2 page 6 . 17

13 Assignment 2 page 7 . 18

14 Assignment 3 page 1 . 19

15 Assignment 3 page 2 . 20

16 Assignment 3 page 3 . 21

17 Assignment 3 page 4 . 22

18 Assignment 4 page 1 . 23

19 Assignment 4 page 2 . 24

20 Assignment 4 page 3 . 25

21 Assignment 4 page 4 . 26

22 Assignment 4 page 5 . 27

23 Assignment 2 survey results . 28

24 Assignment 3 survey results . 29

25 Assignment 4 survey results . 30

26 SpecC-extended Eclipse usage log . 31

ii

List of Tables

1 Student distribution . 7

2 Average working time in minutes in three assignments 7

3 Students who have correct simulation outputs on their Assignment 4 model 8

4 The number of students giving each rating (5-very useful, 4-useful, 3-somewhat

useful, 2-not useful, 1-did not use) on Eclipse features 9

iii

An Extended Eclipse Platform

for Recoding System-Level Models

Xu Han and Rainer Dömer

Center for Embedded Computer Systems

University of California, Irvine

Irvine, CA 92697-3425, USA

{hanx, doemer}@uci.edu

http://www.cecs.uci.edu

Abstract

System-level design methodology is developed to manage the increasing design complexity of em-

bedded systems. With proper tools supporting system-level design, engineers can perform early

design space exploration and automatic refinements on a high-level specification model of the em-

bedded system. However, creating the initial specification model is a time-consuming process. This

report presents an extended eclipse platform to support the process of recoding reference code into

a system-level specification model. Experiments of a class of graduate students using the tool show

that the extended eclipse platform not only increases the productivity but also reduces errors in

system-level modeling and recoding.

1 Introduction

System-level design methodology has been developed to improve the productivity and shorten the

time to market of designing complex embedded system. With proper methodology and tools, the

designer can perform early design space exploration, high-level synthesis and software refinements.

However, the methodology requires an initial system-level model of the target application to start

with. The initial model, called a specification model, is usually described in System Level Design

Languages (e.g. SystemC and SpecC). The model is required to contain explicit structure, com-

munication, and parallelism. Such models are rarely written from scratch. Most often, they are

manually recoded from existing applications in languages such as unstructured and sequential C.

1

http://www.cecs.uci.edu

The manual creation and coding of ESL models is very time-consuming. Little has been done to

automate this process.

For example [2], a top-down refinement-based automatic design flow [6], shown in Figure 1, is

used to design a MP3 audio decoder.

Automation GapManual 12-14 weeks

Less than

1 week

Automatic

C Reference Code

Specification Model

Architecture Model

Architecture Exploration

...

Communication Model

Comm. Exploration

Implementation

Recoding

Figure 1: Motivation of computer-aided recoding

In this flow, the design models are shown in ellipses, and the refinement tasks in between models

are shown as rectangles. The design process starts with an abstract parallel specification model

that is then refined to create models at lower abstraction levels, including an architecture model,

communication model and finally an actual implementation model. Each of the refinement steps in

the design flow is automated to the extent that model generation is fully automatic, and the designer

has to only make the design decisions, such as component allocation, mapping, and scheduling.

Due to automatic refinement, the final implementation of the MP3 decoder was derived in less than

one week. However, recoding C code into the initial specification model took 12-14 weeks which

is more than 90% of the overall design time [1]. Obviously, manual recoding involving creating

structural hierarchy, explicit communication and even removing pointers, are very time-consuming.

In this report, we address the recoding bottleneck by a recoding methodology [4]. We have

developed a recoding platform based on Eclipse, integrating various recoding and analysis features.

Our experiments show that using the recoding platform increases the productivity significantly and

reduces errors in modeling.

2

2 Eclipse Recoding Platform

Eclipse [5] is a platform which can extend its functionality via plug-ins. Based on existing Eclipse

plug-in package of C/C++ Development Tools (CDT), we developed extensions of recoding fea-

tures including syntax highlighting, automatic compiling, outline view, hierarchy view, non-local

variables view, for SpecC System Level Design Language.

Figure 2: A screenshot of SpecC-extended Eclipse

2.1 Syntax highlighting

Syntax highlighting is implemented to increase the readability of SpecC models. As shown in the

middle editor area in Figure 2, SpecC keywords ’behavior’ and ’par’ are colored.

The implementation of syntax highlighting requires scanners to scan the program text each time

it is modified and highlight the text in a specific way. For example, when the user types in the C

keyword ‘i’ ‘n’ ‘t’, the scanner need to scanner the text at each keystroke and highlight ‘int’ in the

end. Also, different area of the program text may need different highlighting scheme. For example,

the word ‘int’ in the comment area may not be highlighted in the same way as regular program text.

3

The key components developed for the syntax highlighting feature include:

• Partition Scanner scans the text to create different partitions according to the syntax. Par-

ticularly for SpecC, we created partitions for behavior, channel and interface definitions by

scanning and recognizing the keyword of starting and ending the syntax.

• SpecC Behavior Scanner is used to scan the partitions for behaviors, channels and interfaces.

The scanner colors SpecC keywords and assigns different background color for behaviors,

channels and interfaces.

• Source Viewer Configuration connects different partitions to the corresponding scanner.

Besides SpecC Behavior scanner, we also assigned scanners for strings, comments and pre-

processor directives.

• Text Change Listener calls the scanners whenever the program text is changed by the user.

2.2 Automatic compiling

Automatic compiling assists the user by performing quick syntax check for the model. When the

SpecC source file is saved, the code is automatically compiled, and any error messages are displayed

in case of unsuccessful compiling.

Since SpecC compiler is in C++ and Eclipse in Java, we need to call SpecC compiler via Java

Native Interface (JNI). We created JNI for SpecC Intermediate Representation (SIR) functions using

the tool SWIG [7].

2.3 Outline and behavior hierarchy view

Outline view provides a list of the structural elements in SpecC code, including functions, variables

and behaviors. Hierarchy view only lists the instantiated behavior hierarchy. With these two views,

the user can quickly navigate the code (jump to items) by clicking the listed items in view windows.

The views are implemented with 3 essential components:

• Input is source object to be visualized in views. Here the input is the SIR of the SpecC model.

• Content Provider sorts out the objects for each list item from the input. For outline view,

content provider reads the SIR and outputs the functions, variables and behaviors in it. For

behavior hierarchy view, content provider outputs the behaviors and its children behaviors.

• Label Provider takes the objects supplied by the Content Provider and prints out the labels

for each object type.

4

2.4 Non-local variables view

Creating parallelism is a particularly important but difficult task in recoding. Manual parallelization

is an error-prone and iterative process where one common problem is to resolve variable dependen-

cies. The non-local variables view helps the user to monitor variable dependency in each function

or behavior and checks potential race conditions among parallel tasks.

Similar as other views, non-local variables view is also implemented with content provider and

label provider and it can also quickly navigate to the variable in question when the user clicks on

it. To perform the dependency analysis, we have developed static analysis functions which build up

variable access lists for each function and behavior at compile time and store them in the SIR [8].

(a) Behavior hierarchy view (b) Non-local variables view

Figure 3: An example of using Non-local Variables View

One typical use case of the Eclipse recoding platform is that the user develops the model in

the text editor and the model is compiled in the background to synchronize the SIR and variable

access lists, both displayed in views. The designer can select one behavior instance or function in

the behavior hierarchy view and the dependent variables of the selected object are displayed in the

non-local variables view based on the instance path from the hierarchy. The designer needs recode

those reported dependent variables by relocating them or creating ports and channels for them. The

designer can also view potential conflicting accesses by selecting multiple items (as in Figure 3(a))

in the behavior hierarchy to ensure correct parallelism. The variables in conflict are highlighted in

red color in the non-local variables view (as in Figure 3(b)).

Tutorials on using above features for system level modeling can be found in Appendix A.1, A.2

and A.3.

5

3 Experimental Results

3.1 Experiment setup

To evaluate the effectiveness of our Eclipse-based recoding platform, we assigned a design example

of Canny Edge Detector [9] to a class (EECS222A, 2012 [3]) of 68 graduate students.

With 3 class assignments (Assignment 2, 3 and 4 from EECS222A), the students recoded the

canny edge detector from C code to parallel SpecC model.

The students in the class were instructed in embedded system design methods and trained in

SpecC SLDL modeling in Assignment 1. Then in Assignment 2, 3 and 4 they are asked to practice

system-level modeling with an example application - Canny Edge Detector [9]. Specifically,

• Assignment 2 (Appendix A.1) asked the students to convert the reference code of Canny to an

initial SpecC model. SpecC-extended Eclipse features of syntax highlighting and automatic

compiling are introduced in the instructions.

• Assignment 3 (Appendix A.2) asked the students to create basic structure and communication

for the model. In this assignment, outline and behavior hierarchy view are introduced to

students.

• Assignment 4 (Appendix A.3) asked the students to parallelize one of the components to

improve the model. In this assignment, non-local variable view is introduced to the students.

Each assignment is given one week to complete. After the students finished, the course instruc-

tor graded their submissions by verifying the parallel simulation results against a golden model.

We offered the SpecC-extended Eclipse only as an optional tool to them and the students were

free to use any of their preferred editors. Meanwhile, we conducted an anonymous survey asking

them to report the tool they had used and their time needed to complete the assignment. If they

reported having used Spec-extended Eclipse, we further asked for ratings on a scale of 1(’did not

use’) to 5 (’very useful’) for the tool features they have used in each assignment. The detailed survey

results are included in Appendix A.4, A.5 and A.6.

3.2 Student distribution

Though 68 students completed the class, not all of them participated in the survey. For those in

the survey, we classify them into 3 categories: non-Eclipse users - those who reported having used

tools other than Eclipse, Eclipse users - those who reported having used SpecC-extended Eclipse,

and hybrid users - those who reported having used both Eclipse and other tools for one assignment.

A small number of students did not report their working time or reported unrealistic time (too short

or too long) in the survey. We have to exclude their survey responses from the results. The survey

results in Table 1 suggest that about 50% (Eclipse plus hybrid users) of the students have used

SpecC-extended Eclipse to complete the assignments.

Students listed some reasons for not using Eclipse in the survey. Among students who used other

editors (including vi, emacs, notepad and UltraEdit), 39% of the students said that their network

6

non-Eclipse Eclipse hybrid no valid survey response

Assignment 2 14 3 9 42

Assignment 3 11 11 3 43

Assignment 4 23 18 5 22

Table 1: Student distribution

connection is too slow or unstable (the tool was only accessible remotely via internet), 9% stated

that they do not like to use IDE or GUI, and others did not state any reason.

Details of the participants in each survey can be found in Appendix A.4, A.5 and A.6.

3.3 Average working time

Table 2 lists the average working time for different types of users in three assignments. In Assign-

ment 2, students using Eclipse only spent about 20% more time than users with other tools and

hybrid users on average (Table 4(a)). However, in Assignment 3 and 4, Eclipse users always spent

significantly less time than non-Eclipse users (Table 4(b), Table 4(c)). Specifically in Assignment

4, when we have most of the students in survey, student using SpecC-extended Eclipse spent 22%

less time than non-Eclipse users on average. The result suggests, after the students are familiar with

the SpecC-extended Eclipse, the tool increased the productivity significantly.

non-Eclipse Eclipse hybrid

A2 152.00 185.00 152.80

A3 272.30 170.90 256.70

A4 281.30 219.39 227.40

Table 2: Average working time in minutes in three assignments

The complete reported work time for each student can be found in Appendix A.4, A.5 and A.6.

Independently of the survey, we also kept a log in Eclipse recording the accesses and use time.

However, the log data may be less valuable than the survey data because it may not reflect the actual

using of the tool on assignments. The students may open the tool for five minutes, give up and

switch to other tools, or they may be away from the computer but leaving the tool open. Therefore,

we choose to rely on survey data in our experiment. For reference, the complete log data is included

in Appendix A.7.

3.4 Model correctness

The non-local variables view aims to help the users to model correct parallelism which is the main

task in Assignment 4. After the class instructor verified all students’ submissions of Assignment

4 by parallel simulation, we summarized the simulation correctness of the students in Table 3 and

Figure 5. The results clearly indicate that students using Eclipse are more likely to produce correct

parallel models.

7

150

155

160

165

170

175

180

185

190

non-eclipse eclipse hybrid

Avg. Working Time

M
in

u
te

s

(a) Assignment 2

150

170

190

210

230

250

270

290

non-eclipse eclipse hybrid

Avg. Working Time

M
in

u
te

s

(b) Assignment 3

150

170

190

210

230

250

270

290

non-eclipse eclipse hybrid

Avg. Working Time

M
in

u
te

s

(c) Assignment 4

Figure 4: Average working time of different tool users

non-Eclipse Eclipse hybrid

Correct Simulation 14/23 (60.87%) 18/18 (100%) 5/5 (100%)

Table 3: Students who have correct simulation outputs on their Assignment 4 model

The simulation results for each students is included in Appendix A.6.

3.5 Feature ratings

The students have provided ratings on a scale of 1(’did not use’) to 5 (’very useful’) for each tool

feature. The results are summarized in Table 4. If we examine the percentage of good ratings

from those who used the features, Figure 6 show that more than 90% of the students considered

all the features are useful (3 and better). The results also indicate a growing satisfaction with the 3

8

0%

20%

40%

60%

80%

100%

non-eclipse eclipse hybrid

Figure 5: Simulation correctness of the output model from Assignment 4

Feature Assignment# 5 4 3 2 1

Syntax Highlighting A2 1 4 4 1 6

A3 5 6 1 1 2

A4 10 7 5 0 1

Automatic Compiling A2 3 2 5 0 6

A3 3 7 3 0 2

A4 6 13 1 1 2

Outline & Behavior Hierarchy A3 4 6 2 1 2

A4 12 8 2 0 1

Non-local Variables A4 2 9 9 1 2

Table 4: The number of students giving each rating (5-very useful, 4-useful, 3-somewhat useful,

2-not useful, 1-did not use) on Eclipse features

assignments.

4 Conclusion

This report follows the recoding methodology [4] and presents an integrated development environ-

ment based on Eclipse for the purpose of system level modeling and recoding in SpecC SLDL.

The SpecC-extended Eclipse integrates functions from SpecC compiler, supports features of syntax

highlighting, outline and hierarchy display, automatic compiling and variable dependency check

displayed in non-local variables view.

As an experiment, the tool is provided to a class of graduate students to complete 3 assignments

on recoding an application of canny edge detector. The survey and simulation results of their out-

put models show that the students using the SpecC-extended Eclipse spent less time to complete

the assignments and delivered output models with fewer errors than those who use other program

9

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

A2 A3 A4

Syntax Highlighting

3 and better

4 and better

5

(a) Syntax Highlighting Rating in A2, A3 and A4

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

A3 A4

Outline and Behavior Hierarchy

3 and better

4 and better

5

(b) Outline and Behavior hierarchy Rating in A3 and A4

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

A2 A3 A4

Automatic Compiling

3 and better

4 and better

5

(c) Automatic Compiling Rating in A2, A3 and A4

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

A4

Non-local Variables

3 and better

4 and better

5

(d) Non-local Variables Rating in A4

Figure 6: Feature Ratings in Each Assignment

editors.

10

References

[1] Pramod Chandraiah and Rainer Dömer. Specification and design of an MP3 audio decoder.

Technical Report CECS-TR-05-04, Center for Embedded Computer Systems, University of

California, Irvine, May 2005.

[2] Pramod Chandraiah and Rainer Dömer. An Interactive Model Re-Coder for Efficient SoC

Specification. In Achim Rettberg, Mauro C. Zanella, Rainer Dömer, Andreas Gerstlauer, and

Franz J. Rammig, editors, Embedded System Design: Topics, Techniques and Trends, Boston,

MA, 2007. Springer.

[3] Rainer Dömer. EECS222A System-on-Chip Description and Modeling.

https://eee.uci.edu/12s/18422/.

[4] Rainer Dömer. Ride: Recoding integrated development environment. Technical Report CECS-

TR-13-02, Center for Embedded Computer Systems, University of California, Irvine, 2013.

[5] Eclipse. http://www.eclipse.org/.

[6] Andreas Gerstlauer, Rainer Dömer, Junyu Peng, and Daniel D. Gajski. System Design: A

Practical Guide with SpecC. Kluwer, 2001.

[7] Simplified wrapper and interface generator. http://www.swig.org/.

[8] Ines Viskic and Rainer Dömer. A Flexible, Syntax Independent Representation (SIR) for System

Level Design Models. In Proceedings of the EuroMicro Conference on Digital System Design,

Dubrovnik, Croatia, August 2006.

[9] Xu Han ,Yasaman Samei and Rainer Dömer. System-level modeling and refinement of a canny

edge detector. Technical Report CECS-TR-12-02, Center for Embedded Computer Systems,

University of California, Irvine, October 2012.

11

https://eee.uci.edu/12s/18422/

A Appendix

A.1 EECS 222A Assignment 2 instructions

1

EECS 222A
System-on-Chip Description and Modeling

Spring 2012

Assignment 2

Posted: April 20, 2012
Due: April 27, 2012 at 12pm (noon)

Topic: Introduction to Application Example

1. Setup:

We will use the same Linux account and the same remote server as for
Assignment 1.

For this and the following assignments, however, we will also use tools with GU
(graphical user interface). For this to work, you will need some X client software,
for example Xming for the Windows platform. Please refer to the course web
page at https://eee.uci.edu/12s/18422/resources.html for hints on how to install
the X server and how to establish the X communication.

We will also use a new version of the SpecC tools for this assignment (in fact, the
most recent alpha version). To use this version, setup your Linux environment as
follows:

source /opt/sce/bin/setup.csh

Finally, we will use the same turnin command for the submission of

deliverables as in the previous assignment. So, please create a new directory
named hw2 (next to your hw1 directory) and work in there:

mkdir hw/hw2
cd hw/hw2

2. Application Example

For the System-on-Chip modeling project in this course, we will use an image
processing application, namely a Canny Edge Detector algorithm. The project
goal is to design a model of this application and describe it in the SpecC system-
level description language so that the created design model can be used for
implementation as a System-on-Chip (SoC) suitable for use in a digital camera.

The Canny Edge Detector algorithm takes an input image, e.g. a digital photo,
and calculates an output image that shows only the edges of the objects in the

Figure 7: Assignment 2 page 1

12

2

photo, as illustrated in the figure below. We will assume that this image
processing is to be performed in real-time in a digital camera by a SoC that we
design and develop.

Please refer to the following sources for more information on the application:

http://en.wikipedia.org/wiki/Canny_edge_detector

http://marathon.csee.usf.edu/edge/edge_detection.html

3. Tools

In the following sections, we’ll provide some hints on helpful Linux tools you can
use for this and the following assignments.

3.1 Image Tools:

There are many command-line tools available in Linux that allow you to
manipulate images. Most start with pnm, pbm, or pgm, depending on the file

format they process. To enumerate them, you can type their prefix into your shell
followed by a TAB. Documentation is available via corresponding man pages.

In addition, graphical tools are available as well (if you have an X server running).
These may be more convenient for occasional use.

To view images, you can use eog which supports most image types (including

our pgm format).

To manipulate images (e.g. if you want to use your own photos as test case for
our application), you can use gimp, a very powerful image editor.

Figure 8: Assignment 2 page 2

13

3

3.2 Source Code Editor:

To convert the C reference code into an executable SpecC model, you may use
any text editor of your choice and use the SpecC compiler via the command line
interface as in Assignment 1. However, we offer as an alternative an extended
version of Eclipse, an open source IDE, which includes specific support for
SpecC projects.

Currently, supported features include:

(a) SpecC syntax highlighting: SpecC keywords are colored in the editor to
increase readability of the code.

(b) Automatic compiling on save: When the SpecC source file is saved (e.g. by
pressing Ctrl-S), the code is automatically compiled, and any error messages are
displayed in case of unsuccessful compiling.

If you choose to use Eclipse, please follow the following steps:

1. Setup environment: source /opt/sce/bin/setup.csh (same as above)

2. Start Eclipse: eclipse

The tool takes some time to start up and asks you for your workspace path.

3. Create a new C++ project:

Select on menu: File -> New -> (expand)C/C++ -> C++ Project,

and click Next. In the next window, types in a project name, and for project type

choose Makefile Project -> Empty Project, and then click Finish.

Now a project folder with your selected name appears in the project view.

4. Create .sc file(s):

You can either copy an existing file into your project folder or right-click on the
project folder, select New -> File and start with an empty file. Note that the file

name should end with a .sc extension for our case. At this point, you can then

edit your SpecC code in Eclipse.

Some more notes on our extended Eclipse:

A. The tool is still under development! While not every feature is complete (and
crashes are possible), we are confident that the current version can increase
your productivity.

Figure 9: Assignment 2 page 3

14

4

B. We appreciate your feedback! If you spot a bug, please consider posting a
problem report to the message board or email it directly to hanx@uci.edu, so

that we can reproduce and attempt to fix it.

C. If you occasionally encounter a start-up problem, try: eclipse -clean

D. Since our extension is based on the original C++ editor, it may give you false
warnings of unrecognized SpecC syntax (shown as question marks). To turn this
off, select on the menu: Window -> Preferences ->(expand)C/C++ ->
(expand)Editor -> Hovers, and uncheck Enable editor problem
annotation.

4. Instructions

The purpose of this assignment is for you to become familiar with the Canny
application source code and prepare it for use with the SpecC tool suite.

Step 1: Download the application source code

You can download the Canny application source code from the web site at
ftp://figment.csee.usf.edu/pub/Edge_Comparison/source_code/canny.src .

Alternatively, you can copy the same source file and a suitable input image from
our course account:

cd hw/hw2
cp ~eecs222/EECS222A_S12/canny.src .
cp ~eecs222/EECS222A_S12/golfcart.pgm .

We will use this C reference implementation of the Canny algorithm as the
starting point for our design model and the golf cart image as test case.

Step 2: Test the given C code

Convert the canny.src file into a single ANSI-C file canny.c. Few adjustments

will be necessary, then you can compile and test the application, similar to the
following:

vi canny.c
gcc canny.c -lm -o canny
./canny golfcart.pgm 0.6 0.3 0.8
eog golfcart.pgm_s_0.60_l_0.30_h_0.80.pgm

The generated output image should look similar to the one shown above.

Figure 10: Assignment 2 page 4

15

5

Step 3: Study the structure of the application

Before we go and write a system-level model of the application, we need to study
and understand it well. Examine the source code and its execution! You should
be able to answer questions like the following:

What are the main functions of the algorithm? Which functions are used for data
input and for data output? Where does the actual computation occur? Which of
the functions is the one with the most complexity? Can we expect the application
to run in real-time as required by our overall goals? How much memory is
needed when the algorithm runs? Are there any obvious candidates for hardware
acceleration? What should better be performed in software? …

There is nothing to submit for these questions, but be prepared to discuss these
issues in class.

Step 4: Create an executable SpecC source file

Please time yourself for this step. At the end, we would like to know how many
minutes this step took for you. Thanks!

Copy the canny.c file into an initial SpecC file canny.sc. Next, for the SpecC

compiler to process this file, there are a few additional adjustments necessary
(due to limitations of the current scc implementation).

-> edit the file canny.sc (using eclipse or other editor)

-> compile it (e.g. scc canny –vv –ww)

-> watch for any warnings and errors; if so, fix and repeat...

Note that at this time, we will not yet introduce behaviors or channels into the file
(execution will still start from the global main function). We only want to make the

code compliant to the limitations of scc.

In particular, scc only supports initialization of variables with expressions that are

constants at compile time. For example, if you get error #2028 “Expression not
constant”, then this is likely a case that can be fixed as follows:

char *infilename = NULL;

should be converted to

char *infilename;
infilename = NULL;

or simply

char *infilename = 0;

Figure 11: Assignment 2 page 5

16

6

You will also notice that scc is not as forgiving as gcc in terms of type

mismatches, and is also more strict in proper declaration of variables and
functions before they can be referenced/used. A good rule of thumb is that your
code should be as clean as possible to make scc happy.

You are done with this step when your code compiles fine without errors or
warnings. Please note the time when you are done.

Step 5: Fix parameters for synthesis

Please time yourself for this step. At the end, we would like to know how many
minutes this step took for you. Thanks!

In order to synthesize our model later into an actual chip, we need to decide on
certain parameters, which are flexible in the initial software, to become fixed
constants for the SoC implementation. For example, dynamic memory allocation
(i.e. malloc()and free()) is not feasible to be implemented. Instead, we need

to use static arrays with fixed size at compile time. Also, command-line
parameters, such as the file name, can only be passed to a test bench, not to the
actual SoC.

In your canny.sc, refine the source code such that the following parameters

become hard-coded constants:

rows = 240
cols = 320
sigma = 0.6
tlow = 0.3
thigh = 0.8

For the file name, you can either leave it as a command-line argument
(recommended if you want to process other images), or hard-code it as follows:

infilename = “golfcart.pgm”

At the same time, we need to remove all dynamic memory allocation from the
algorithm. To simplify this assignment, however, we will ignore all calloc()
calls, and only remove malloc() and the corresponding free() calls. You will

notice that there are only four malloc() calls in the entire code. Three of those

are actually never used, so you can simply remove those functions.

The remaining malloc() and the corresponding free() call should be

removed and replaced with the use of a static array.

That’s all the needed changes in the code for this assignment (please note the
time it took!), but we will continue with the project in the next one where we will
introduce a proper hierarchical structure for system synthesis.

Figure 12: Assignment 2 page 6

17

7

3. Submission:

For this assignment, submit the following deliverables:

Canny.sc
Canny.txt

The text file should briefly mention whether or not your efforts were successful
and what (if any) problems you encountered. Be brief!

To submit the deliverables, change into the parent directory of your hw2 directory

and enter turnin. As in the previous assignment, the turnin command will

locate the files listed above and allow you to submit them.

Remember that you can use the turnin tool to submit at any time before the

deadline, but not after! Since you can submit as many times as you want (newer
submissions will overwrite older ones), it is highly recommended to submit early
and even incomplete work, in order to avoid missing the deadline.

Late submissions cannot be considered!

In addition to these deliverables, we would like to ask you to complete a short
survey on your experience with the extended eclipse. Please check the course

message board for this survey.

--
Rainer Doemer (EH3217, x4-9007, doemer@uci.edu)

Figure 13: Assignment 2 page 7

18

A.2 EECS 222A Assignment 3 instructions

1

EECS 222A
System-on-Chip Description and Modeling

Spring 2012

Assignment 3

Posted: April 27, 2012
Due: May 4, 2012 at 12pm (noon)

Topic: Structural Hierarchy for Application Example

1. Setup:

We will use the same setup as for Assignment 2 and again use the latest SCE
version:

source /opt/sce/bin/setup.csh

In order to use turnin to submit your deliverables, create a new directory

named hw3 (next to your hw2 directory) and work in there:

mkdir hw/hw3
cd hw/hw3

2. Application Example

We will continue with the project of designing a system-level model for the Canny
Edge Detector algorithm. This assignment basically starts where Assignment 2
ended. For your reference, we have provided a solution file.

cp ~eecs222/EECS222A_S12/canny_a2_ref.sc .

For this Assignment 3, we have prepared another file, canny_a3_start.sc,

where some more clean-up has been done and a few other adjustments have
been applied. So, use the following as starting point for this assignment:

cp ~eecs222/EECS222A_S12/canny_a3_start.sc canny.sc
cp ~eecs222/EECS222A_S12/Makefile .
cp ~eecs222/EECS222A_S12/golfcart.pgm .
cp ~eecs222/EECS222A_S12/ ref_golfcart.pgm
 _s_0.60_l_0.30_h_0.80.pgm .

Note the Makefile and the reference image. With these, you can compile, run,

and test your code quickly (type make in your shell or simply use Eclipse).

Figure 14: Assignment 3 page 1

19

2

3. Tools

Please refer to the previous assignment regarding helpful Linux tools for this
project. Again, you may use any text editor of your choice and use the SpecC
compiler via the command line interface. Alternatively, we offer our extended
version of Eclipse, an open source IDE, which includes specific support for
SpecC projects.

3.1 Eclipse Update:

In addition to (a) SpecC syntax highlighting and (b) Automatic compiling on save,
supported features now include an Outline View and a Behavior Hierarchy
display which provide you with overview and quick navigation of your code.

(c) Outline View: This is open by default. You can find it in the window at the right
side of your editor. You can quickly navigate the code (jump to items) by clicking
the listed items in Outline.

(d) Behavior Hierachy: This is not open initially. To open it, select from the menu
Window -> Show View -> Other, find category SpecC, and select

Behavior Hierachy. Once the Behavior Hierarchy is shown, you need to re-

save (re-compile) your file to refresh the view. This will update the hierarchy
display if your code compiles successfully.

In this assignment, both features should proof to be quite useful.

4. Instructions

The purpose of this assignment is to introduce a proper test bench and overall
structural hierarchy into our application model.

Please time yourself for this assignment. At the end, we would like to know how
many minutes this took for you. Thanks!

In particular, we will introduce the top-level behavior Main consisting of

Stimulus, Platform, and Monitor behaviors. The Platform behavior, in

turn, should contain an input unit DataIn, an output unit DataOut, and the

actual design under test DUT.

For communication, we will introduce proper channels. Specifically, we will use
queue channels (of size 2) to send and receive the image data between the
behaviors. For the above structural hierarchy, four channels will be needed, two
at the test bench level (Main behavior), and two within the Platform behavior.

As data type for the channels, please define the following:

typedef unsigned char img[SIZE]; // image data type

Figure 15: Assignment 3 page 2

20

3

Overall, your model should be structured as the following sir_tree log shows:

sir_tree -blt canny.sir
B i o behavior Main
B i l |------ Monitor monitor
B i c |------ Platform platform
B i l | |------ DUT canny
B i l | |------ DataIn din
B i l | |------ DataOut dout
C i l | |------ c_img_queue q1
C i l | \------ c_img_queue q2
B i l |------ Stimulus stimulus
C i l |------ c_img_queue q1
C i l \------ c_img_queue q2

The Main behavior should instantiate and run the Stimulus, Platform, and

Monitor in parallel. In addition (optional), it may handle command line

parameters (e.g. the image file name) and pass them into the Stimulus and/or

Monitor.

The Stimulus behavior should read the input image from the file system and

pass it into the Platform via a queue channel. Correspondingly, the Monitor
should receive the edge image from the Platform and write it out into the

output file.

In the Platform, the DataIn behavior should, in an endless loop, receive an

input image and pass it unmodified to the DUT. Similar, the DataOut behavior

should, also in an endless loop, receive an input image from the DUT and pass it

on. These two behaviors will allow our test bench to remain unmodified even
when later in the design flow the communication to the DUT is implemented via
detailed bus protocols.

Finally, the DUT behavior should contain all the Canny algorithm code. Its main

method should receive an image, call canny() to process it, and send out the

edge image. Since our target chip will never stop working (unless its power is
turned off), this processing should run in an endless loop, similar as the DataIn
and DataOut behaviors.

Throughout your model recoding, ensure that it still compiles, runs, and
generates the correct output image. You are done with this assignment when the
hierarchy described above has been created and your code compiles fine without
errors or warnings. Please note the time when you are done.

Figure 16: Assignment 3 page 3

21

4

3. Submission:

For this assignment, submit the following deliverables:

canny.sc
canny.txt

As before, the text file should briefly mention whether or not your efforts were
successful and what (if any) problems you encountered. Be brief!

To submit the deliverables, change into the parent directory of your hw3 directory

and enter turnin. As in the previous assignments, the turnin command will

locate the files listed above and allow you to submit them.

Remember that you can use the turnin tool to submit at any time before the

deadline, but not after! Since you can submit as many times as you want (newer
submissions will overwrite older ones), it is highly recommended to submit early
and even incomplete work, in order to avoid missing the deadline.

Late submissions cannot be considered!

In addition to these deliverables, we would like to ask you to complete a short
survey on your experience with the extended eclipse. Please check the course

message board for this survey.

--
Rainer Doemer (EH3217, x4-9007, doemer@uci.edu)

Figure 17: Assignment 3 page 4

22

A.3 EECS 222A Assignment 4 instructions

1

EECS 222A
System-on-Chip Description and Modeling

Spring 2012

Assignment 4

Posted: May 11, 2012
Due: May 18, 2012 at 12pm (noon)

Topic: Parallelization of Application Example

1. Setup:

We will use the same setup as for Assignment 3 and again use the latest SCE
version:

source /opt/sce/bin/setup.csh

In order to use turnin to submit your deliverables, create a new directory

named hw4 (next to your hw3 directory) and work there:

mkdir hw/hw4
cd hw/hw4

2. Application Example

We will continue with the project of designing a system-level model for the Canny
Edge Detector algorithm. This assignment starts one step after the point where
Assignment 3 ended. For your reference, we have provided a solution file.

cp ~eecs222/EECS222A_S12/canny_a3_ref.sc .

As discussed in Lecture 5, we have now inserted an additional level of hierarchy
into the DUT. Also, some additional clean-up has been performed and a few
other adjustments have been applied. So, for this Assignment 4, we have again
prepared a source file to start from, namely canny_a4_start.sc.

Figure 18: Assignment 4 page 1

23

2

The hierarchy tree of the corresponding canny_a4_start.sir model looks as

follows:

sir_tree -blt canny.sir
B i o behavior Main
B i l |------ Monitor monitor
B i c |------ Platform platform
B i s | |------ DUT canny
B i l | | |------ Apply_Hysteresis apply_hysteresis
B i l | | |------ Derivative_X_Y derivative_x_y
B i l | | |------ Gaussian_Smooth gaussian_smooth
B i l | | |------ Magnitude_X_Y magnitude_x_y
B i l | | \------ Non_Max_Supp non_max_supp
B i l | |------ DataIn din
B i l | |------ DataOut dout
C i l | |------ c_img_queue q1
C i l | \------ c_img_queue q2
B i l |------ Stimulus stimulus
C i l |------ c_img_queue q1
C i l \------ c_img_queue q2

To set up, use the following as starting point for this assignment:

cp ~eecs222/EECS222A_S12/canny_a4_start.sc canny.sc
cp ~eecs222/EECS222A_S12/Makefile .
cp ~eecs222/EECS222A_S12/golfcart.pgm .
cp ~eecs222/EECS222A_S12/ ref_golfcart.pgm
 _s_0.60_l_0.30_h_0.80.pgm .

As for Assignment 3, we provide again a Makefile and the reference image so

that you can compile, run, and test your code quickly (type make in your shell or

simply use Eclipse). Note, however, that in contrast to the compiler command in
the previous Makefile, we now have enabled the parallel simulation feature of

the latest SpecC compiler (see below for more discussion on this).

3. Tools

Please refer to the previous assignments regarding helpful Linux tools for this
project. Again, you may use any text editor of your choice and use the SpecC
compiler via the command line interface. Alternatively, we recommend our
extended version of Eclipse, an open source IDE, which includes specific support
for SpecC projects (and this assignment, in particular!).

Figure 19: Assignment 4 page 2

24

3

3.1 Eclipse Update:

In addition to (a) SpecC syntax highlighting, (b) Automatic compiling on save, (c)
Outline View, and (d) Behavior Hierachy, the SpecC-enhanced Eclipse now
offers a new display that shows variable accesses and potential conflicts in
parallel execution.

(e) Non-local Variable View: This is not open initially. To open it, select from the
menu Window -> Show View -> Other, find category SpecC, and select

Non-local Variables.

Before you can use the Non-local Variable View, please make sure both
Behavior Hierarchy (BH, see instructions for Assignment 3) and Non-
local Variables (NV) are visible in Eclipse. For example, if both views

appear in the same sub-window beneath the editor after you open them (only
one can be seen at a time), then you can drag BH or NV and drop it into the sub-
window at the right side of the editor (so that you can see both).

Note that there are two ways to use NV:

1. Check data-flow for correct ports: if you select a leaf behavior in BH, the non-
local variables accessed in that behavior will be displayed in NV. The variables
listed are defined or used outside the selected behavior and essentially are
inputs or outputs of the behavior. Consequently, these should be converted to
ports for proper modeling.

2. Check data conflicts for correct parallelism: once you have created parallel
behaviors, for example, par{A; B;}, you can multi-select the parallel behaviors

by first selecting A in BH and then holding Ctrl on your keyboard when selecting

B. The variables accessed by both A and B are then displayed in NV. More

importantly, any potential data conflicts due to shared variables between A and B
are highlighted in red. These are the variables which may cause erroneous
parallel execution!

For this assignment, this new feature should proof to be very useful.

Figure 20: Assignment 4 page 3

25

4

4. Instructions

Please time yourself for this assignment. At the end, we would like to know how
many minutes this took for you. Thanks!

The purpose of this assignment is to introduce and explicitly specify potential
parallelism in our application model.

As discussed in Lectures 5 and 6, we will focus our attention to the behavior
Gaussian_Smooth which contains the highest amount of computation in the

Canny application. The goal is to parallelize this block so that we can speed up
the overall computation.

For the purpose of this assignment, we will aim at a maximum of 4 parallel blocks
executing at the same time.

As discussed in class, we will decompose the behavior Gaussian_Smooth into

three types of behaviors, namely a preparation step Prep, the horizontal image

blurring BlurX, and the vertical image blurring BlurY. For each of these

behaviors, multiple instances may be used in order to maximize the parallelism of
the Gaussian Smooth method. How many instances are used, how they are
connected, and which ones actually run in parallel, is to be answered as part of
this assignment.

Hint on parallelization: Same as many other graphics applications, we can
parallelize the image processing by splitting the picture into multiple parts along
its rows or columns and work on those slices in parallel. Here, the blurring can be
performed the same way. To do this, we recommend to pass the entire image to
each parallel unit, and also pass in the range of rows or columns (via ports) that
the unit is supposed to work on.

Hint on validation: In order to validate whether or not your parallelism works
safely, it is useful to run the simulation also in parallel. For this, we have now
enabled the parallel simulation feature of the latest SpecC compiler in the
provided Makefile. Specifically, we now call scc with the option –par which

instructs it to utilize multiple available cores on the host in parallel. In our case,
please use the machines eta.eecs.uci.edu or theta.eecs.uci.edu for

your simulation. Both have 2 cores each that the parallel simulator will use.

As discussed in class, this not only can provide you with faster simulation speed,
it also helps in detecting concurrency problems in your model. In particular, with
parallel simulation, it is highly likely that shared variables with access conflicts
during parallel usage actually produce errors during simulation (which is what we
want!).

Figure 21: Assignment 4 page 4

26

5

Throughout your model recoding, make sure that it still compiles without any
warnings, runs without any errors (even when parallel simulation is enabled), and
generates exactly the expected output image.

You are done with this assignment when the Gaussian_Smooth behavior has

been decomposed into the three behavior types and up to 4 instances of these
run concurrently. Your model should not contain any global variables or global
functions and your hierarchy should be “clean” for synthesis purposes (no “dirty”
behavior should be part of the DUT).

Please note the time when you are done. Thanks!

5. Submission:

For this assignment, submit the following deliverables:

canny.sc
canny.txt

As before, the text file should briefly mention whether or not your efforts were
successful and what (if any) problems you encountered. Be brief!

To submit the deliverables, change into the parent directory of your hw4 directory

and enter turnin. As in the previous assignments, the turnin command will

locate the files listed above and allow you to submit them.

Remember that you can use the turnin tool to submit at any time before the

deadline, but not after! Since you can submit as many times as you want (newer
submissions will overwrite older ones), it is highly recommended to submit early
and even incomplete work, in order to avoid missing the deadline.

Late submissions cannot be considered!

Extra credit: In addition to these deliverables, we would like to ask you to
complete a short survey on your experience with the extended eclipse. Please

check the course message board for this survey.

--
Rainer Doemer (EH3217, x4-9007, doemer@uci.edu)

Figure 22: Assignment 4 page 5

27

A.4 Assignment 2 survey results

Assignment 2 survey questions:

1.What text editor did you use for Assignment 2?

1.1.a. Please select from the list:

1.2.a. If you select other, please specify:

1.3.a. How much time did you spend on this assignment (in minutes) ?

2.If you have used SpecC-enhanced eclipse, please answer the following questions:

 (5-very useful, 4-useful, 3-somewhat useful, 2-not useful, 1-did not use)

2.1.a. How helpful is the feature 'SpecC Syntax Highlighting' ?

2.2.a. How helpful is the feature 'Automatic Compiling' ?

Results:

ID 1.1.a 1.2.a 1.3.a 2.1.a 2.2.a User Category

student#1 vi, eclipse 120 4 4 hybrid user

student#2 gedit, eclipse, other 300 1 1 hybrid user

student#3 gedit, eclipse 70 4 3 hybrid user

student#4 gedit, eclipse 80 1 1 hybrid user

student#5 eclipse, other UltraEdit 90 4 1 hybrid user

student#6 vi, gedit, eclipse 240 1 1 hybrid user

student#7 vi, eclipse 225 2 3 hybrid user

student#8 vi, eclipse 100 3 3 hybrid user

student#9 vi, eclipse 150 3 4 hybrid user

student#10 eclipse 180 3 5 eclipse user

student#11 eclipse 125 5 5 eclipse user

student#12 eclipse 250 1 1 eclipse user

student#13 vi 120 1 1 non-eclipse user

student#14 vi 70 1 5 non-eclipse user

student#15 vi eclipse 120 non-eclipse user

student#16 notepad++ Eclipse is extremely slow. 250 3 3 non-eclipse user

student#17 vi 300 4 3 non-eclipse user

student#18 other emacs 125 1 2 non-eclipse user

student#19 gedit 60 1 1 non-eclipse user

student#20 vi 45 1 1 non-eclipse user

student#21 other using Winscp in windows 500 1 1 non-eclipse user

student#22 vi 90 1 1 non-eclipse user

student#23 vi, gedit 120 1 1 non-eclipse user

student#24 gedit 200 1 1 non-eclipse user

student#25 vi 45 3 5 non-eclipse user

student#26 notepad++ 85 1 1 non-eclipse user

student#27 eclipse 3 4 no time reported

student#28 vi, eclipse 4 4 no time reported

student#29 notepad++, eclipse 4 4 no time reported

student#30 eclipse 4 4 4 reported time too short

student#31 eclipse 4 4 no time reported

student#32 vi 1 1 no time reported

Figure 23: Assignment 2 survey results

28

A.5 Assignment 3 survey results

Assignment 3 survey questions:

1.1.a. What text editor did you use for Assignment 3?

1.2.a.How much time did you spend on it (in minutes) ?

2.If you have used SpecC-enhanced eclipse, please answer the following questions:

 (5-very useful, 4-useful, 3-somewhat useful, 2-not useful, 1-did not use)

2.1.a. How helpful is the feature 'SpecC Syntax Highlighting' ?

2.2.a. How helpful is the feature 'Automatic Compiling' ?

2.3.a. How useful are features of 'Outline' and 'Behavior Hierarchy' ?

Results:

ID 1.1.a 1.2.a 2.1.a 2.2.a 2.3.a User Category

student#1 eclipse and notepad++ 90 5 3 3 hybrid user

student#2 Eclipse and UltraEdit 200 5 5 4 hybrid user

student#3 Eclipse and GEDIT 480 1 3 3 hybrid user

student#4 Eclipse 180 4 4 1 eclipse user

student#5 I use Eclipse 210 5 4 4 eclipse user

student#6 eclipse 180 3 5 2 eclipse user

student#7 Eclipse 70 4 4 5 eclipse user

student#8 eclipse 120 5 4 4 eclipse user

student#9 Eclipse 180 4 4 4 eclipse user

student#10 Eclipse 120 5 5 4 eclipse user

student#11 Eclipse 60 4 1 4 eclipse user

student#12 eclipse 160 4 3 5 eclipse user

student#13 I used Eclipse 360 2 4 5 eclipse user

student#14 Eclipse 240 4 4 5 eclipse user

student#15 gedit 300 1 1 1 non-eclipse user

student#16 EMACS 360 4 4 4 non-eclipse user

student#17 Emacs 50 1 1 1 non-eclipse user

student#18 emacs 300 1 1 1 non-eclipse user

student#19 editplus 350 1 1 1 non-eclipse user

student#20 Programmer's Notepad 300 1 1 1 non-eclipse user

student#21 VI Editor 225 1 1 1 non-eclipse user

student#22 notepad 240 1 1 1 non-eclipse user

student#23 VI editor 420 1 1 1 non-eclipse user

student#24 gedit 150 1 1 1 non-eclipse user

student#25 Notepad++ 300 1 1 1 non-eclipse user

student#26 Eclipse 15%, VI 5%, Notepad++ 80% 5 1 1 no time reported

student#27 gedit 4 4 4 no time reported

student#28 Notepad++ 2 2 3 no time reported

student#29 1 1 1 no time reported

Figure 24: Assignment 3 survey results

29

A.6 Assignment 4 survey results

Assignment 4 survey questions:

1.1.a. What text editor did you use for Assignment 4?

1.2.a.How much time did you spend on it (in minutes) ?

2.a. Did you encounter simulation errors on multicore server ('eta' or 'theta') after you turn on '-par' option ?

3.1.a. How useful is the feature 'Non-local Variables' view ? (5-very useful, 4-useful, 3-somewhat useful, 2-not useful, 1-did not use, same below)

3.2.a. Did 'Non-local Varables' view help you to create correct parallelism ?

3.3.a. How useful are features of 'Outline' and 'Behavior Hierarchy' ?

3.4.a. How helpful is the feature 'Automatic Compiling' ?

3.5.a. How useful is the feature 'SpecC Syntax Highlighting' ?

Results:

ID 1.1.a 1.2.a 2.a 3.1.a 3.2.a 3.3.a 3.4.a 3.5.a User Category Simulation

student#1 editplus on my windows 300 no 3 No, I think I don't have any non-local variables3 4 4 hybrid user Correct

student#2 Emacs 100 no 1 1 1 1 hybrid user Correct

student#3 notepad++ and eclipse 300 No 4 Yes 5 4 5 hybrid user Correct

student#4 vim 317 no 3 4 4 4 hybrid user Correct

student#5 gedit and eclipse 120 no errors 3 no, the parallelism worked before i turned to NV :)5 5 5 hybrid user Correct

student#6 eclipse 300 No? 4 No. Couldn't understand how to solve "problematic" variables.4 4 5 eclipse user Correct

student#7 Eclipse 180 No 5 Yes 5 4 4 eclipse user Correct

student#8 Eclipse 80 No 2 No 5 2 3 eclipse user Correct

student#9 Eclipse 540 No 4 I used NV only to check for port mappings5 1 3 eclipse user Correct

student#10 Eclipse 180 No 4 yes 4 4 5 eclipse user Correct

student#11 Eclipse 180 No 3 No 4 5 5 eclipse user Correct

student#12 eclipse 180 no 1 5 5 5 eclipse user Correct

student#13 Eclipse 200 no 4 yes 4 4 4 eclipse user Correct

student#14 Eclipse 120 No 3 Did not use that for parallelism.5 5 5 eclipse user Correct

student#15 SpecC-enhanced eclipse 187 No 3 No 5 5 3 eclipse user Correct

student#16 eclipse 300 No 4 yes 4 5 4 eclipse user Correct

student#17 eclipse 200 no 3 no 4 4 5 eclipse user Correct

student#18 Eclipse 120 no 3 It helps. However, I personally prefer drawing the structure diagram by hand,4 4 3 eclipse user Correct

student#19 eclipse 225 no 5 yes 5 3 5 eclipse user Correct

student#20 eclipse 120 no 4 slightly 5 4 5 eclipse user Correct

student#21 eclipse 480 no 3 3 4 4 eclipse user Correct

student#22 eclipse 240 no 4 5 4 3 eclipse user Correct

student#23 eclipse 117 no 4 Yes 5 4 4 eclipse user Correct

student#24 Programmer's Notepad 150 None 1 1 1 1 non-eclipse user Correct

student#25 vim 120 eta 2 1 1 4 non-eclipse user Correct

student#26 Notepad 180 no 4 yes 3 3 3 non-eclipse user Correct

student#27 vim 240 no 1 no 5 4 4 non-eclipse user Correct

student#28 emacs 240 No 1 1 1 1 non-eclipse user Correct

student#29 Vim 180 No 3 No 4 3 5 non-eclipse user Correct

student#30 emacs 240 no 1 1 1 1 non-eclipse user Correct

student#31 Vi 90 No 4 4 4 4 non-eclipse user Correct

student#32 notepad++ 210 No 1 1 1 1 non-eclipse user Correct

student#33 VI Editor, GEdit 320 No errors 1 1 1 1 non-eclipse user Correct

student#34 Xcode 420 No 4 It is supposed to be helpful but I found no collision at all so cannot tell5 4 2 non-eclipse user Correct

student#35 Gedit 600 No 1 No 1 1 non-eclipse user Correct

student#36 gedit 420 no 1 1 1 1 non-eclipse user Correct

student#37 Notepad++ 330 No, it worked on the first try1 1 1 1 non-eclipse user Correct

student#38 Notepad++ 120 No. 1 1 1 1 non-eclipse user Incorrect

student#39 emacs 300 I didn't encounter specific simulation errors.1 non-eclipse user Incorrect

student#40 Winscp 400 no 1 1 1 1 non-eclipse user Incorrect

student#41 gedit 480 I was unable to completely debug my code. My code still has errors so I could not simulate.1 did not use 1 1 1 non-eclipse user Incorrect

student#42 Xcode 70 No. non-eclipse user Incorrect

student#43 gedit 360 yes, deadlock issues.1 No, I tried not to use any non-local variables3 3 3 non-eclipse user Incorrect

student#44 vi 400 no 1 1 1 1 non-eclipse user Incorrect

student#45 vi 300 Yes 5 Yes 3 3 4 non-eclipse user Incorrect

student#46 Notepad++ 300 no non-eclipse user Incorrect

student#47 Notepad++ yes 1 Dont know1 1 1 no time reported Correct

student#48 VI no 4 yes 3 5 5 no time reported Correct

student#49 eclipse 960 i used eta with no errors when using -par4 yes 4 5 2 reported time too longCorrect

student#50 Gedit No 1 1 1 1 no time reported Correct

student#51 Eclipse and Notepad 240 No 3 A little. 4 4 4 no usage log Incorrect

student#52 eclipse 2880 No 3 No really 5 4 5 reported time too longIncorrect

student#53 WinScp 36 No 1 1 1 1 reported time too shortIncorrect

Figure 25: Assignment 4 survey results

30

A.7 SpecC-extended eclipse usage log

ID A2 A3 A4

student#1 317 418 170

student#2 7 0 0

student#3 760 677 285

student#4 0 121 228

student#5 8 0 0

student#6 0 0 175

student#7 544 9 61

student#8 24 0 0

student#9 163 72 271

student#10 8 0 16

student#11 99 142 0

student#12 538 347 679

student#13 0 132 78

student#14 341 753 259

student#15 112 98 129

student#16 235 419 187

student#17 10 0 0

student#18 275 518 431

student#19 88 147 0

student#20 0 0 56

student#21 363 896 934

student#22 253 457 667

student#23 788 0 0

student#24 30 0 0

student#25 728 196 0

student#26 0 97 42

student#27 22 0 8

student#28 0 3 0

student#29 0 0 14

student#30 376 410 433

student#31 54 0 0

student#32 26 0 0

student#33 31 14 0

student#34 264 749 1486

student#35 301 84 54

student#36 34 0 0

student#37 0 0 36

student#38 330 751 1837

student#39 15 34 122

student#40 120 66 0

student#41 8 0 6

student#42 243 84 128

student#43 0 0 176

student#44 243 248 528

student#45 110 7 12

student#46 4 0 0

student#47 0 44 0

student#48 135 39 317

student#49 194 393 231

student#50 365 212 28

student#51 441 796 114

student#52 371 289 117

student#53 272 347 156

Total Users with time>10 37 32 34

Total Users with time>0 43 35 36

Figure 26: SpecC-extended Eclipse usage log

31

	1 Introduction
	2 Eclipse Recoding Platform
	2.1 Syntax highlighting
	2.2 Automatic compiling
	2.3 Outline and behavior hierarchy view
	2.4 Non-local variables view

	3 Experimental Results
	3.1 Experiment setup
	3.2 Student distribution
	3.3 Average working time
	3.4 Model correctness
	3.5 Feature ratings

	4 Conclusion
	References
	A Appendix
	A.1 EECS 222A Assignment 2 instructions
	A.2 EECS 222A Assignment 3 instructions
	A.3 EECS 222A Assignment 4 instructions
	A.4 Assignment 2 survey results
	A.5 Assignment 3 survey results
	A.6 Assignment 4 survey results
	A.7 SpecC-extended eclipse usage log

