
System-Level Communication Modeling for Network-on-Chip Synthesis

Andreas Gerstlauer, Dongwan Shin, Rainer Dömer, Daniel D. Gajski
Center for Embedded Computer Systems

University of California, Irvine, USA
{gerstl,dongwans,doemer,gajski}@cecs.uci.edu

Abstract— As we are entering the network-on-chip era and
system communication is becoming a dominating factor, com-
munication abstraction and synthesis are becoming the integral
part of system design flows. The key to the success of any de-
sign flow are well-defined abstraction levels and models, which
enable automation of early validation, synthesis and verification.
In this paper, we define system communication abstraction layers
and corresponding design models that support successive, step-
wise refinement from abstract message-passing down to a cycle-
accurate, bus-functional implementation. Experimental results
show the benefits of our definitions and design flow.

I. INTRODUCTION

As SoCs grow in complexity and size, on-chip communi-
cation is becoming increasingly important. Furthermore, new
classes of optimization problems arise as communication de-
lays and latencies across the chip start dominating computa-
tion delays. In other words, simple (e.g. bus based) communi-
cation architectures are not sufficient any more. Therefore, as
we enter the network-on-chip (NoC) era, new network-based
communication architectures and design flows are needed.

Communication design for SoCs poses unique challenges in
order to cover a wide range of architectures while at the same
time offering new opportunities for optimizations based on
the application-specific nature of system designs. The goal is
therefore, to develop a corresponding NoC communication de-
sign flow that enables rapid design space exploration through
design automation in order to achieve the required productivity
gains while supporting a wide range of implementations.

In order to automate the NoC design process, a well-defined
design flow with clear and unambiguous abstraction levels,
models, and transformations is required. The key to the suc-
cess of this approach are properly defined design models. Ar-
bitrary models without clear semantics do not enable synthesis
and verification. For example, only subsets of hardware de-
scription languages such as VHDL or Verilog are synthesiz-
able or verifiable. In addition, synthesis requires clear defini-
tions of the target architecture and the set of synthesis steps to
transform the input model into the target model.

In this work, we aim to define such models, design steps,
and corresponding model transformations that are necessary
for an automated network-on-chip design flow. Note that due
to space limitations, this paper can only provide an overview
of the approach. Details can be found in [8].

A. Communication Design Flow
Fig. 1 shows the proposed communication design flow.

Communication design starts with a virtual architecture model
of the system in which processing elements (PEs) communi-
cate via abstract channels with untimed synchronous or asyn-
chronous message-passing semantics. In a first network de-

Network DesignNetwork Design Network
protocols

Network
protocols

Architecture modelArchitecture model

Physical modelPhysical model

GUIGUI

Link modelLink model

Comm. Link DesignComm. Link Design Media
protocols

Media
protocols

Protocol modelProtocol modelMAC modelMAC model

Fig. 1. Communication design flow.

sign task, the global system network is designed and end-to-
end communication between PEs is mapped into point-to-point
communication between stations of the network architecture.
The result of the network design step is a refined link model
of the system. In the link model, PEs and other network sta-
tions communicate via logical link channels that carry streams
of packets between directly connected components.

In the second communication link design task, logical links
between adjacent stations are then grouped and implemented
over an actual communication medium where each group of
links can be implemented separately. As a result of the com-
munication design process, a physical model of the system is
generated. The physical model is a fully structural model in
which stations are connected via pins and wires and communi-
cate in a cycle-accurate manner based on media protocol tim-
ing specifications. In the backend process, behavioral descrip-
tions of computation and communication in each component of
the physical model are then synthesized into targeted hardware
or software implementations.

Apart from the physical model, the communication design
flow can produce transaction-level models (TLMs) which ab-
stract the pin-level communication in the physical model to the
level of media access or individual protocol word/frame trans-
actions. Depending on the parameters of the implementation,
automatically generated TLMs can be used to trade off accu-
racy and model complexity for simulation speed, for example.

B. Related Work
There is a wealth of system-level design languages (SLDL)

like SystemC [1] or SpecC [2] available for modeling and de-
scribing systems at different levels of abstraction. However,
the languages itself do not define any details of actual concrete
design flows. More recently, SLDLs have been proposed as ve-
hicles for so-called transaction-level modeling (TLM) for com-
munication abstraction [4]. However, no specific definition of
the level of abstraction and the semantics of transactions in
such models have been given. Furthermore, TLM proposals so
far focus on simulation only and they lack the path to vertical
integration of models for implementation and synthesis.

 45

1B-4s

0-7803-8736-8/05/$20.00 ©2005 IEEE. ASP-DAC 2005



Layer Interface semantics Functionality Impl. OSI

Application N/A • Computation Application 7

Presentation
PE-to-PE, typed, named messages

• v1.send(struct myData)
• Data formatting Application 6

Session
PE-to-PE, untyped, named messages

• v1.send(void*, unsigned len)
• Synchronization
• Multiplexing OS kernel 5

Transport
PE-to-PE streams of untyped messages

• strm1.send(void*, unsigned len)

• Packeting
• Flow control
• Error correction

OS kernel 4

Network
PE-to-PE streams of packets

• strm1.send(struct Packet)
• Routing OS kernel 3

Link
Station-to-station logical links

• link1.send(void*, unsigned len)
• Station typing
• Synchronization Driver 2b

Stream
Station-to-station control and data streams

• ctrl1.receive()
• data1.write(void*, unsigned len)

• Multiplexing
• Addressing Driver 2b

Media Access
Shared medium byte streams

• bus.write(int addr, void*, unsigned len)
• Data slicing
• Arbitration HAL 2a

Protocol
Unregulated word/frame media transmission

• bus.writeWord(bit[] addr, bit[] data)
• Protocol timing Hardware 2a

Physical
Pins, wires

• ADDR.drive(0)
• DATA.sample()

• Driving, sampling Interconnect 1

TABLE I. COMMUNICATION LAYERS.

There are several approaches dealing with automatic gener-
ation, synthesis and refinement of communication [3, 7]. None
of these approaches, however, provide intermediate models
breaking the design gap into smaller steps required for rapid,
early exploration of critical design issues. Furthermore, to our
knowledge, there is no approach that deals with methodical and
automated implementation of communication over network-
oriented, non-traditional communication structures. In [6], the
authors show an approach for modeling of communication at
different levels of abstraction with automatic translation be-
tween levels based on message composition rules. However,
they do not describe an actual design flow that includes support
for arbitration and interrupt handling in traditional bus-based
architectures.

II. COMMUNICATION LAYERS

The communication design flow is structured along a lay-
ering of communication functionality within each task of the
design flow. The implementation of SoC communication is
divided into several layers based on separation of concerns,
grouping of common functionality, dependencies across lay-
ers, and early validation of critical issues for rapid and efficient
design space exploration through humans or automated tools.

Table I summarizes the layers for SoC communication by
listing for each layer its interface of services offered to the
layer above, its functionality, and the level where it will be im-
plemented through the backend tools (software, operating sys-
tem kernel, device driver, hardware abstraction layer (HAL),
hardware). Layering is based on the ISO OSI reference model
[9]. However, due to the unique features and characteristics of
SoC communication, layers have been tailored specifically to
network-on-chip requirements. Furthermore, note that layers
only serve as a specification of the desired implementation. As
part of communication synthesis within each tool, layers may
be merged for cross-optimizations.

A. Network Design
Network design implements presentation, session, transport,

and network layers. The presentation layer is responsible for

data formatting. It converts abstract data types in the appli-
cation to untyped data blocks as defined by the canonical net-
work byte layout. The session layer implements end-to-end
synchronization for synchronous communication and multi-
plexing of channels into a set of end-to-end message streams.
The transport layer splits messages into packets (e.g. to reduce
required intermediate buffer sizes) and optionally implements
end-to-end flow control and error correction. Finally, the net-
work layer is responsible for routing and multiplexing of end-
to-end paths over individual point-to-point links. As part of
the network layer, additional communication stations are intro-
duced as necessary, e.g. to create and bridge subnets, splitting
the system of connected PEs into several segments.

B. Link Design
Link design implements link, stream, media access, and pro-

tocol layers. The link layer determines interface types (e.g.
master/slave) and implements any necessary synchronization
over underlying control and data streams. The stream layer
multiplexes control and data streams over shared media by sep-
arating them in space (but not time) through addressing and
polling. The media access layer is responsible for slicing data
packets into protocol transactions and for regulating and sepa-
rating simultaneous accesses in time (e.g. through arbitration,
possibly introducing additional arbiter components). Finally,
the protocol layer implements the timing- and pin-accurate
driving and sampling of wires.

III. IMPLEMENTATION

We have implemented network and communication refine-
ment tools that can generate design models corresponding to
various communication layers automatically [10]. Given de-
sign decisions, the tools will take a virtual architecture model
of the system down to its bus-functional, physical model.

A. Experiments
In order to demonstrate the modeling concepts, we applied

the communication design flow to the example design of a
mobile phone baseband platform. For additional examples,

 46



RcvData

Co-process

SpchOut

DCT

stripe[]

Decoder

JPEG Coder

OSModel

SerOut

SpchIn

SerIn

DSP
CF_OS

Mem

DMA

HW

DCT_IP

BI

BO

SO

SICtrl

ColdFire

DSP_OS

D
C

TA
da

pt
er

Vocoder

Fig. 2. Architecture model example.

CF_OS

ColdFire

DMA

DMA_HW

DCT

DCT_IP

M

S

DSP_OS

DSP

OSModel

HW

SI

SI_HW

BI

BI_HW

SO

SO_HW

BO

BO_HW

Bridge

M
S

linkBri

l

D
C

TA
da

pt
er

lin
kD

M
A

linkBri

linkBI

linkHW

linkSI

linkBO

linkSO

Mem

Fig. 3. Link model example.

CF_BF

ISR

l

PIC

CF_OS
CF_HAL

CF_HW

A
D

D
R ColdFire

DMA

DMA_BF

A
D

D
R

A
D

D
R

Mem

Mem_BF

A
D

D
R

DCT

DCT_IP

Arbiter

T_BF

D
S

P
_B

F

PIC

DSP_OS

D
S

P_
H

A
L D
S

P_
H

W

DSP

l

A
D

D
R

OSModel

ISR

HW

A
D

D
R

HW_BF

SI

SI_BF

BI

ADDR,
POLL_ADDR

BI_BF

SO

SO_BF

BO

BO_BF

Bridge

A
D

D
R

A
D

D
R

ADDR,
POLL_ADDR

ADDR,
POLL_ADDR

ADDR,
POLL_ADDR

Fig. 4. Physical model example.

including application of the design flow to non-traditional,
network-oriented communication architectures, see [8].

The virtual architecture model of the system at the input of
communication design is shown in Fig. 2. The design con-
sists of two subsystems: a ColdFire subsystem running JPEG
encoding and a DSP subsystem for voice encoding/decoding
(vocoder). The ColdFire processor is running the JPEG en-
coder in software assisted by a hardware IP component for
DCT (DCT IP). Under control of the processor, a DMA com-
ponent receives pixel stripes from the camera and puts them
in the shared memory (Mem). The DSP is running concurrent
encoding and decoding tasks. Tasks are dynamically sched-
uled under the control of an operating system model [5] that
sits in an additional OS layer DSP OS of the DSP processor.
The encoder on the DSP is assisted by a custom hardware co-
processor (HW) for the codebook search. Furthermore, four
custom hardware I/O processors perform buffering and fram-
ing of the vocoder speech and bit streams. In the architec-
ture model, hardware and software processors communicate
via asynchronous message-passing channels.

As a result of the network design process, the network is
partitioned into one segment per subsystem with a Bridge con-
necting the two segments (Fig. 3). Individual point-to-point
logical links connect each pair of stations in the resulting link
model. Application channels are routed statically over these
links where the Ctrl channel spanning the two subsystems is
routed over two links via the intermediate bridge. In the re-

sulting link model, presentation layers are instantiated inside
each system component. The presentation layer for commu-
nication with the DCT IP is inlined from the wrapper into the
ColdFire processor. The memory component is replaced with a
model describing the memory byte layout and presentation lay-
ers accessing the memory perform the necessary conversions
of variables into memory bytes. Session, transport, and net-
work layers are not implemented and presentation layers are
routed over links through proper connectivity.

During link design, links in each subsystem are imple-
mented over its shared medium. The native ColdFire and DSP
processor busses are selected as communication media. Within
each segment, unique bus addresses and interrupts for synchro-
nization are assigned to each link and memory. In the resulting
physical model (Fig. 4), link, stream, media access and proto-
col layers are instantiated inside the OS and hardware layers
of each station. Inside the processors, interrupt handlers that
communicate with link layer adapters through semaphores are
created. Interrupt service routines (ISR) together with models
of programmable interrupt controllers (PIC) model the proces-
sor’s interrupt behavior and invoke the corresponding handlers
when triggered. Components are connected via pins and wires
driven by the protocol layer adapters. On the ColdFire side, an
additional arbiter component regulates bus accesses between
the two masters, DMA BF and CF BF. Finally, a transducer
T BF is inserted to translate between the DCT IP and Cold-
Fire bus protocols.

 47



ColdFire subsystem DSP subsystem System
Lines of Simulation Comm. Lines of Simulation Comm. Lines of Simulation

Model code time delays code time delays code time

Application 3,729 0.29 s 0 ms 12,528 17.8 s 0 ms 14,363 34.1 s
Link 3,978 0.30 s 0 ms 12,480 18.7 s 0 ms 14,535 35.2 s
Stream 4,099 0.62 s 0.28 ms 12,558 18.8 s 0.29 ms 14,754 58.4 s
Media Access 4,337 0.99 s 0.40 ms 12,782 25.2 s 0.57 ms 15,244 90.5 s
Protocol 5,313 8.66 s 1.18 ms 12,966 56.1 s 0.79 ms 16,436 544 s
Physical 5,906 20.6 s 1.50 ms 13,245 178 s 0.92 ms 17,335 1,824 s

TABLE II. EXPERIMENTAL RESULTS.

1.0

10.0

100.0

App Link Stream MAC Protocol Physical

N
or

m
al

iz
ed

 s
im

ul
at

io
n 

tim
e

System

DSP

CF

Fig. 5. Simulation performance.

B. Results
Table II summarizes the results for the example design. Us-

ing the refinement tools, models of the example design were
automatically generated within seconds. A testbench common
to all models was created which exercises the design by simul-
taneously encoding and decoding 163 frames of speech on the
vocoder side while performing JPEG encoding of 30 pictures
with 116x96 pixels. Models of the whole system and each sub-
system were simulated on a 360 MHz Sun Ultra 5 workstation
using the QuickThreads version of the SpecC simulator.

Fig. 5 plots simulation times normalized against the archi-
tecture model times. Contributions of communication over-
head to the simulated overall transcoding (back-to-back en-
coding and decoding) and encoding delays in the vocoder and
JPEG encoder, respectively, are shown in Fig. 6. Delays are
normalized against the overhead in the final physical model.

Results show that with increasing implementation detail at
lower levels of abstraction, accuracy improves linearily while
model complexities grow exponentially. Results confirm the
choice of the link model as the intermediate model in the de-
sign flow that allows fast validation of the overall network
topology. By definition, all models above the physical model
are TLMs in which communication is abstracted away from
pins and wires. The results show that depending on the ar-
chitecture, MAC or protocol TLMs return accurate results at
much higher simulation speeds. If there is no bus contention,
the MAC model provides fast and accurate feedback. How-
ever, in the presence of arbitration, slicing of data into bus
words/frames needs to be modeled in order to get accurate re-
sults that include effects of interleaved media accesses at the
protocol level. In these cases, only the protocol model can
provide correct delays with significantly reduced simulation
speeds. Finally, at the communication level, pin- and timing-
accurate results are available at the expense of huge runtimes.

IV. SUMMARY & CONCLUSIONS

In this paper, we presented a communication design flow
with well-defined design steps and design models. Start-
ing from a virtual architecture model with abstract message-
passing communication, a design is brought down to a bus-

0

0.2

0.4

0.6

0.8

1

1.2

App Link Stream MAC Protocol Physical

N
or

m
al

iz
ed

 c
om

m
. d

el
ay

s

Transcoding

JPEG

Fig. 6. Simulated communication overhead.

functional implementation through network and link design
tasks. Using an industrial-strength example, the feasibility and
benefits of the approach have been demonstrated.

Out of all possible models, intermediate models have been
defined based on accuracy vs. simulation speed tradeoffs al-
lowing early validation of critical design decisions. In between
design tasks, the link model defines the implementation of the
end-to-end network on top of point-to-point logical links. Fur-
thermore, two transaction-level models have been identified for
providing accurate results above the pin level.

In general, models at various levels of abstraction have been
defined such that they can be automatically generated through
successive refinement. Therefore, the flow supports high-level
communication abstractions for fast feedback and early simu-
lation together with an automated path to implementation. In
conclusion, the models are the enabler for rapid, early design
space exploration and significant productivity gains.

Future work includes adding algorithms for decision making
to provide a completely automated synthesis process. Further-
more, we plan to extend design tasks and refinement tools to
implement error-correction, flow control, and dynamic routing
for long-latency, error-prone network communication media.

REFERENCES
[1] T. Grötker et al. System Design with SystemC. Kluwer, 2002.
[2] A. Gerstlauer et al. System Design: A Practical Guide with SpecC.

Kluwer, 2001.
[3] W. O. Cesário et al. “Multiprocessor SoC platforms: A component-

based design approach.” IEEE D&T, 19(6), November/December 2002.
[4] M. Coppola et al. “IPSIM: SystemC 3.0 enhancements for communi-

cation refinement.” In DATE, 2003.
[5] A. Gerstlauer et al. “RTOS Modeling for System Level Design.” In

DATE 2003.
[6] R. Siegmund and D. Müller. “SystemCSV : An extension of SystemC for

mixed multi-level communication modeling and interface-based system
design.” In DATE, 2001.

[7] K. van Rompaey et al. “CoWare: A design environment for heteroge-
neous hardware/software systems.” In Euro-DAC, 1996.

[8] A. Gerstlauer. “Communication Abstractions for System-Level Design
and Synthesis.” Technical Report CECS-TR-03-30, UC Irvine, 2003.

[9] International Organization for Standardization. Reference Model of
Open System Interconnection, 1994. ISO/IEC 7498 Standard.

[10] S. Abdi et al. “Automatic Communication Refinement for System Level
Design.” In DAC 2003.

 48


	I Introduction
	A Communication Design Flow
	B Related Work

	II Communication Layers
	A Network Design
	B Link Design

	III Implementation
	A Experiments
	B Results

	IV Summary & Conclusions

